
Texts in Computer Science

Fundamentals 
of Predictive 
Text Mining

Sholom M. Weiss
Nitin Indurkhya
Tong Zhang

Second Edition



Texts in Computer Science

Series editors

David Gries
Fred B. Schneider



More information about this series at http://www.springer.com/series/3191

http://www.springer.com/series/3191


Sholom M. Weiss • Nitin Indurkhya
Tong Zhang

Fundamentals of Predictive
Text Mining

Second Edition

123



Sholom M. Weiss
Department of Computer Science
Rutgers University
Piscataway, NJ
USA

Nitin Indurkhya
School of Computer Science and
Engineering

University of New South Wales
Sydney, NSW
Australia

Tong Zhang
Department of Statistics, Hill Center
Rutgers University
Piscataway, NJ
USA

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-1-4471-6749-5 ISBN 978-1-4471-6750-1 (eBook)
DOI 10.1007/978-1-4471-6750-1

Library of Congress Control Number: 2015946744

Springer London Heidelberg New York Dordrecht
© Springer-Verlag London 2010, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag London Ltd. is part of Springer Science+Business Media (www.springer.com)

Series editors
David Gries
Department of Computer Science
Cornell University
Ithaca, NY
USA

Fred B. Schneider
Department of Computer Science
Cornell University
Ithaca, NY
USA



Preface

Previously we authored “Text Mining: Predictive Methods for Analyzing
Unstructured Information.” That book was geared mostly to professional practi-
tioners, but was adaptable to course work with some effort by the instructor. Many
topics were evolving, and this was one of the earliest efforts to collect material for
predictive text mining. Since then, the book has seen extensive use in education, by
ourselves, and other instructors, with positive responses from students. With more
data sourced from the Internet, the field has seen very rapid growth with many new
techniques that would interest practitioners. Given the amount of supplementary
new material we had begun using, a new edition was clearly needed. A year ago,
our publisher asked us to update the book and to add material that would extend its
use as a textbook. We have revised many sections, adding new material to reflect
the increased use of the web. Exercises and summaries are also provided.

The prediction problem, looking for predictive patterns in data, has been widely
studied. Strong methods are available to the practitioner. These methods process
structured numerical information, where uniform measurements are taken over a
sample of data. Text is often described as unstructured information. So, it would
seem, text and numerical data are different, requiring different methods. Or are
they? In our view, a prediction problem can be solved by the same methods,
whether the data are structured numerical measurements or unstructured text. Text
and documents can be transformed into measured values, such as the presence or
absence of words, and the same methods that have proven successful for predictive
data mining can be applied to text. Yet, there are key differences. Evaluation
techniques must be adapted to the chronological order of publication and to
alternative measures of error. Because the data are documents, more specialized
analytical methods may be preferred for text. Moreover, the methods must be
modified to accommodate very high dimensions: tens of thousands of words and
documents. Still, the central themes are similar.
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Our view of text mining allows us to unify the concepts of different fields. No
longer is “natural language processing” the sole domain of linguists and their allied
computer specialists. No longer is search engine technology distinct from other
forms of machine learning. Ours is an open view. We welcome you to try your hand
at learning from data, whether numerical or text. Large text collections, often
readily available on the Internet, contain valuable information that can be mined
with today’s tools instead of waiting for tomorrow’s linguistic techniques. While
others search for the essence of language understanding, we can immediately look
for recurring word patterns in large collections of digital documents.

Our main theme is a strictly empirical view of text mining and an application of
well-known analytical methods. Our presentation has a pragmatic bent with
numerous references in the research literature for you to follow when so inclined.
We want to be practical, yet inclusive of the wide community that might be
interested in applications of text mining. We concentrate on predictive learning
methods but also look at information retrieval and search engines, as well as
clustering methods. We illustrate by examples and case studies.

While some analytical methods may be highly developed, predictive text mining
is an emerging area of application. We have tried to summarize our experiences and
provide the tools and techniques for your own experiments.

Audience

Our book is aimed at IT professionals and managers as well as advanced under-
graduate computer science students and beginning graduate students. Some back-
ground in data mining is beneficial but is not essential. A few sections discuss
advanced concepts that require mathematical maturity for a proper understanding.
In such sections, intuitive explanations are also provided that may suffice for the
less advanced reader. Most parts of the book can be read and understood by anyone
with a sufficient analytic bend. If you are looking to do research in the area, the
material in this book will provide direction in expanding your horizons. If you want
to be a practitioner of text mining, you can read about our recommended methods
and our descriptions of case studies.

For Instructors

The material in this book has been successfully used for education in a variety of
ways ranging from short intensive one-week courses to twelve-week full semester
courses. In short courses, the mathematical material can be skipped. The exercises
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have undergone class-testing over several years. Each chapter has the following
accompanying material:

• a chapter summary
• exercises.

In addition, numerous examples and figures are interlaced throughout the book.
Slides, sample solutions to selected exercises and suggestions for using the book in
courses are are available from the publisher’s companion site for this book.

Optional Software

AI Data-Miner LLC has provided a free software license for those who have
purchased the book. The software, which implements many of the methods dis-
cussed in the book, can be downloaded from the data-miner.com Web site. Linux
scripts for many examples are also available for download. The software requires
familiarity with running command-line programs and editing configuration files.
See http://www.data-miner.com for details.

Second Edition Updates

The book has been thoroughly revised and updated to reflect developments in the
field since the first edition was published. The following new sections have been
added to the second edition:

• Deep Learning
• Graph Modeling
• Mining Social Media
• Errors and Pitfalls in Big Data Evaluation
• Twitter Sentiment Analysis
• Introduction to Dependency Parsing.
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Chapter 1
Overview of Text Mining

1.1 What’s Special About Text Mining?

Do you have a shortage of data? Not very likely. A consequence of the pervasive use
of computers is that most data originate in digital form. If we trade a stock or write
a book or buy a product online, these events evolve electronically. Since so many
paper transactions are now in paperless digital form, lots of “big” data are available
for further analysis.

The concept of data mining, finding valuable patterns in data, is an obvious
response to the collection and storage of large volumes of data. Data mining is
no longer an emerging technology awaiting further development. Although its appli-
cation is far from universal, the techniques of data mining are highly developed and
for some forms of analysis are entering a mature phase.

We would like to say “Give us data and we will find the patterns.” Unfortunately,
data-mining methods expect a highly structured format for data, necessitating exten-
sive data preparation. Either we have to transform the original data, or the data are
supplied in a highly structured format.

Data-mining methods learn from samples of past experience. If we speak to spe-
cialists in predictive data mining, their data will be in numerical form. These people
are the “numbers guys.” The “text miners” do not expect an orderly series of num-
bers. They are happy to look at collections of documents, where the contents are
readable and their meaning is obvious.

This is our first distinction between data and textmining: numbers versus text. That
doesn’t mean that these are two distinct concepts. Both are based on samples of past
examples. The composition of the examples is very different, yetmany of the learning
methods are similar. That’s because the text will be processed and transformed into
a numerical representation.
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2 1 Overview of Text Mining

1.1.1 Structured or Unstructured Data?

Superficially, we see numbers or text in our data. The text is usually a collection of
unstructured documents with no special requirements for composing the documents.
As noted above, most data-mining applications assimilate only structured informa-
tion. The data must be prepared in a very special way before any learning methods
can be applied. Figures1.1 and 1.2 illustrate the world of structured data.

Typical data-mining applications use structured information that is carefully pre-
pared. The data may be transformed by a “data preparation” process or, better yet,
the data may be collected based on careful prior design for mining. The items that
will be used are clearly described over a range of all possibilities, and these are then
recorded uniformly for every example that is a member of the sample. The recipe is
well-known. Two types of information are expected: (a) ordered numerical and (b)
categorical. Ordered numerical attributes have values where greater than or less than
comparisons have meaning. For example, weight and income are obviously ordered.
Categorical attributes are unordered numerical codes that have a definition in a code-
book. The most common categorical attribute is something that can be measured as
true or false, represented by a one or a zero. For example, gender can be measured
as male or female, or business category can be measured by a code. The meaning of
the code is described elsewhere, not to be used by the learning program but by the
individuals interpreting the results of learning.

If data can be described by a spreadsheet with its tabular format, then the problem
is highly structured. The task of data collection is to fill in the blank cells. Many
mathematical methods use spreadsheet data, also known as a matrix. To learn from
spreadsheet data, we populate the cells formed by intersecting rows and columns.We
must fill in these cells in a uniformmanner. Each cell is organized in the same way. A
completed row is a complete example of past experience. For example, in a medical
domain, it might be a single patient. A column is an example of one measurement on
the patient, for example blood pressure. Thus, the intersection of row 2 and column 3
in Fig. 1.2 is the weight of the second patient or, more generally, the second example
and third measurement.

Fig. 1.1 Structured data in standard format

Fig. 1.2 A spreadsheet
example of medical data
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We can now clearly see the structured world of data mining. Data must be rep-
resented in a highly organized manner. We typically use a spreadsheet format. The
labels of columns are designed to fit the domain and are made permanent. Following
this design, data are collected by adding rows (i.e., examples), where each example
is measured using the same attributes. It is mechanically easy to add a new example
by filling in a row. Adding a new attribute, a column, is more difficult, requiring a
review of all previous examples and a measurement of the new value for each. Once
we have data such as these, we can operate in a typical mathematical fashion. A
single row or column is a vector, and the complete spreadsheet or database table is
a matrix.

1.1.2 Is Text Different from Numbers?

The presentations of data for classical datamining and text mining are quite different.
Whereas data-mining methods like to see the data in spreadsheet format, text-mining
methods like to see a document format, and the standard presentation for learning
is a variant of the format called XML used in the document world. Clearly, we
expect that text is quite different from numbers. Still, the methods that we will
discuss in this book are similar to those used for data mining. These methods have
proved remarkably successful without understanding specific properties of text such
as the concepts of grammar or the meaning of words. Strictly low-level frequency
information is used, such as the number of times a word appears in a document, and
then well-known methods of machine learning are applied. One of the main themes
supporting text mining is the transformation of text into numerical data, so although
the initial presentation is different, at some intermediate stage, the data move into a
classical data-mining encoding. The unstructured data become structured.

Our text-mining methods will be similar to classical data-mining methods. These
methods will transform data from text to standard numerical forms. To make these
methodswork, we need to transform text into a standard spreadsheet format and fill in
the spreadsheet’s cells. The rows of a spreadsheet are examples of prior experience,
so for text, we can consider a document to be one complete example. A column
is an attribute that can be measured. In the most fundamental model of text, we
can consider the presence or absence of a word to be a measured attribute for each
document. Thus, each row represents a document and each column a word.We could
fill in the cells, as in Fig. 1.3, with ones or zeros. In this example, the word “income”
appears in documents 1 and 3 but not documents 2 or 4.

Fig. 1.3 A binary
spreadsheet of words in
documents
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Many variants of this document and word representation could be explored, but
this is the fundamental concept, where words are attributes and documents are exam-
ples, and together these form a sample of data that can feed our well-known learning
methods. Many machine-learning methods perform accurately with this transforma-
tion, working with far larger amounts of data than humans could hope to process.
These programs have little knowledge of meaning or grammar. They are statistical
methods that lack prior knowledge. They counterbalance that deficiency with mas-
sive processing of data, finding patterns in word combinations that are recurring and
predictive.

The spreadsheet model of data returns us to the familiar territory of classical
data-mining methods. Nevertheless, we would be foolish to rush to apply learning
methods in their original form without taking advantage of the special characteristic
of text. The spreadsheet remains the conceptual model, but it would be impractical,
inefficient, or even ineffective until we understood some of its important differences
from classical numerical data.

Consider a collection of documents. The set of attributes will be the total set of
unique words in the collection. We call this set of words a dictionary. The examples
are the individual documents. We compose a spreadsheet and fill in the cells with
a one for the presence of a word and a zero for its absence. An application might
have many thousands or even millions of documents. The dictionary will converge
to a smaller number of words than the number of documents but can readily number
several hundred thousands. Specialized documents, such as repair manuals with part
numbers that are alphanumeric, may lead to very large dictionaries. It appears that
the spreadsheet model is too unwieldy to be practical.

Viewing the spreadsheet more closely, we see almost all zeros. Unless individual
documents are surprisingly lengthy, almost book length, the matrix is sparse: any
individual document will use only a tiny subset of the potential set of words in a dic-
tionary. Because of that special characteristic, the spreadsheet remains a reasonable
conceptual model of data. Methods that process text will expect sparse spreadsheets
and will leverage that property in their implementations to store only positive cell
values.

Sparseness is not the only representational difference. All the values in a text-
mining spreadsheet are positive. Classical data-mining methods will consider all
values of an attribute, both positive and negative. The decision criteria could readily
say “if word x has value zero, then conclude class y”. In contrast, text-mining meth-
ods mostly concentrate on positive matches, not worrying whether other words are
absent from a document. This view also leads to great simplifications in processing,
often allowing text-mining programs to operate in what would be considered huge
dimensions for regular data-mining applications.

If we focus on positive occurrences of words, we also have a solution to one of
the bête noires of applying data-mining methods: missing values. The spreadsheet
model for data has a cell for each measurable value in an example. Most methods
expect the cell to have a value. In practical applications, such as when we extract
information from a real-world database, a great deal of information is missing, and
the cell remains empty. An empty cell is not the same as saying that the answer is a
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default value, such as false for a binary-valued attribute or a mean value for a real-
valued attribute. Many schemes have been developed for managing missing values,
almost all with inherent deficiencies. These weaknesses are particularly manifest
when the majority of values are missing. For text, missing values are a nonissue:
words are either present or absent from a document. We can completely fill in the
spreadsheet and all the cells.

In our simplified world of text mining, we have described documents as examples
and words as attributes in a spreadsheet. Although it could be argued that these
are gross simplifications of the representation needed for text, it is consistent with
our theme of transforming words to numbers, so that known data-mining methods
can be applied. We will present numerous variations on this model of data and its
statistical view of words and text. Thus, although text-mining operates in very high
dimensions, in many situations, processing is effective and efficient because of the
sparseness characteristic of most documents and most practical applications.

Let’s look at the types of problems that we can try to solve with this approach to
data representation and learning methods.

1.2 What Types of Problems Can Be Solved?

A primary focus of our attention is classification and prediction. These are among
the most widely studied and applied methods and applications of data mining. Given
a sample of past experience and correct answers for each example, the objective is to
find the correct answers for new examples.Wewill consider those types of problems,
such as text categorization, that are clear applications for predictive methods.

The concept of classification can be extended to data that do not have clearly
labeled answers. Our task would be to organize the data in such a way that we can
make up labels or answers and expect these to hold in the future. This process is
referred to as clustering.

Although similarity between documents is an essential ingredient in organizing
unlabeled documents into distinct groups, measuring similarity of documents is an
end in itself. Measuring similarity between documents is fundamental to most forms
of document analysis, especially information retrieval.

The applications that we discuss do not emphasize linguistic analysis. Statistical
and associational relationships are the basis of our presentation. At some point in
the future, a deeper semantic understanding may demonstrate clear performance
advantages. For now, the preeminence of statistical approaches has been shaped
by the increasing capabilities of computer resources. Most important has been the
outpouring of digital data, where libraries of documents are in digital form, ready
for analysis by text-mining methods.

Let’s look at some of the areas where these text-mining methods can work for us.
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Fig. 1.4 Text categorization

1.3 Document Classification

Text categorization is the widely used, but ponderous, name for document classifi-
cation. It is the purest embodiment of the spreadsheet model with labeled answers.
Once the data are transformed to the usual numerical spreadsheet format, standard
data-mining methods are applicable. Figure1.4 illustrates the document classifica-
tion application. Documents are organized into folders, one folder for each topic.
A new document is presented, and the objective is to place this document in the
appropriate folders. For example, we might have a folder for household or financial
documents and we want to add new documents to the correct folder. The applica-
tion is almost always binary classification because a document can usually appear in
multiple folders.

Originally, this type of problem was considered a form of indexing, much like
the index of a book. As more and more documents have become available online,
the applicability of this task has broadened. Some of the more obvious tasks are
related to e-mail: for example, automatically forwarding e-mail to the appropriate
companydepartment or detecting spammail. The spreadsheetmodelwith one column
corresponding to the correct answer is the universal classification model for data,
and the transformed text data can readily be combined with standard numerical data-
mining data. As an example, you might think that you could predict future stock
movements based on prior experience. You collect news articles that appeared prior
to a rise or fall in stock prices along with company financial data. The labels would
be binary, 1 for up and 0 for down.

1.4 Information Retrieval

Information retrieval is the topic most commonly associated with online documents.
What is more fundamental to browsing the Internet than a search engine? The general
task of information retrieval is illustrated in Fig. 1.5. A collection of documents
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Fig. 1.5 Retrieving matched documents

is obtained, we give clues as to the documents that we want to retrieve from the
collection, and then documents matching the clues are presented as answers to our
query.

What are the clues, and how are they used to retrieve relevant documents? The
clues are words that help identify the relevant stored documents. In a typical instance
of invoking a search engine, a few words are presented, and these words are matched
to the stored documents. The bestmatches are presented as the responses. The process
can be generalized to a document matcher, where instead of a few words, a complete
document is presented as a set of clues. The input document is then matched to all
stored documents, retrieving the best-matched documents.

A basic concept for information retrieval is measuring similarity: a comparison
is made between two documents, measuring how similar the documents are. For
comparison, even a small set of words input into a search engine can be considered
as a document that can be matched to others. From one perspective, measuring
similarity is related to predictive methods for learning and classification that are
called nearest-neighbor methods. The common theme is measuring similarity, and
variations of these methods are fundamental to information retrieval.

The spreadsheet model of data can readily be used for these tasks. The new
document is equivalent to a new row. The new row is compared to all the other rows,
and the most similar rows and their associated documents are the answers.

1.5 Clustering and Organizing Documents

For text categorization, we saw that the objective was to place new documents into
the appropriate folders. These folders were created by someone with knowledge of
the document structure, someone who knew the expected topics. What if we have
a collection of documents with no known structure? For example, a company may
have a help desk that receives and records calls by users of their products. The
company might want to learn about the categories and types of complaints. The
general objective is illustrated in Fig. 1.6. Given a collection of documents, find a set
of folders such that each holds similar documents.
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Fig. 1.6 Organizing documents into groups

The clustering process is equivalent to assigning the labels needed for text cat-
egorization. Because there are many ways to cluster documents, it is not quite as
powerful a process as assigning answers (i.e., known correct labels) to documents.
Still, clustering can be insightful. By studying key words that characterize a cluster,
a company could learn about its customers. In the help-desk example, a computer
companymight find that the largest cluster of complaints is for networking problems.
It might also identify an unexpected type of problem, documents indicating many
calls for help, for which they do not have a good solution.

In terms of the spreadsheet model, clustering will add at least one column to a
spreadsheet, corresponding to true-or-false labels for the examples. The number of
labels will be determined by the clustering algorithm.

1.6 Information Extraction

Our representation of data looks at information in terms of words. This is a rudimen-
tary formulation that is surprisingly successful for many applications. In comparison
with classical numerical data-mining representations, these measurements are very
shallow. We are only measuring the presence or absence of words. A data-mining
representation may look the same, but the measurements themselves will be far
broader and more complex. They may be real-valued variables, such as sales vol-
ume, or a code, such as an industry code like “auto industry.” Someone is responsible
for defining these attributes and depositing them in a database.
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Fig. 1.7 Extracting information from a document

An alternative way of looking at these distinctions is that data mining expects
highly structured data, and text is naturally unstructured. To make text structured,
we have employed a very shallow representation that measures the simple occurrence
of words. Information extraction is a subfield of text mining that attempts to move
text mining onto an equal footing with the structuredworld of data mining. Figure1.7
illustrates the task of information extraction. The objective is to take an unstructured
document and automatically fill in the values of a spreadsheet.

A database, at least one organized by fields or tables, is structured. When the
information is unstructured, such as that found in a collection of documents, then a
separate process is needed to extract data from an unstructured format. For example,
we may examine documents about companies and extract the sales volumes and
industry codes from text that has not been structured for storage in a database. The
attribute that is measured will not have a fixed position in the text and may not be
described in the same way in different documents.

In terms of our spreadsheet model of data, the objective is to fill in the cells. The
role of the examples is unchanged; they are documents. The columns are not just
words but can be higher-level concepts that are found by the information extraction
process. This process examines documents and fills in the cells, a process that is
equivalent to populating a database table. Once the process is completed, the usual
learning methods can be applied to the spreadsheet.

1.7 Prediction and Evaluation

Our ultimate goal is prediction, projecting from a sample of prior examples to new
unseen examples. The learning program studies documents and finds some gener-
alized rules that will give correct answers on new examples. How do we know that
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we will be successful on new examples? The classic approach is to “hold out” some
examples with known answers, not allowing the learning program to train on those
examples. These new examples are used solely for evaluation. For many text-mining
scenarios, the holdout evaluation will be effective (e.g., assigning topics to news
stories, such as financial or sports stories). Even so, there are special twists. News
stories change over time, and we must be sensitive to dates of publication in our
selection of test documents.

One of the basic concepts of prediction is the measurement of error. For topic
assignment, we can readily determine whether a program’s answer is right or wrong.
The classical measures of accuracy will be applicable, but not all errors will be
evaluated equally. That’s why measures of accuracy such as “recall” and “precision”
are especially important to document analysis.

Not all text-mining problems present themselves in completed spreadsheet form.
Therefore we need to examine techniques for clustering or information extraction,
where labeled answers are not readily accessible. Although prediction is primary,
these related subtasks are evaluated in less certain terms. The concepts of error and
evaluation must be tailored to the task at hand and its immediate goals.

1.8 The Next Chapters

We will discuss each of the aforementioned topics in-depth. The emphasis is almost
exclusively on a statistical approach. Although we have said that text can be mapped
into a standard framework for numerical data mining, the differences in data prepa-
ration strongly influence the designs and selection of learning methods.

Having an efficient representation suitable for operation in a high-dimensional
space of documents does not give a complete picture of text-mining methods. It is
not just a matter of transforming words to vectors and applying standard learning
methods. Experience with text and statistical methods gives us direction in favoring
some approaches over others.

We will discuss our selection of methods for processing text. Document and
text processing has a very large body of knowledge. Our objectives are much more
limited. The presentation of text mining emphasizes predictive methods. Ours is not
an encyclopedic body of knowledge. Rather, we unify several areas that have been
treated separately. Our goal is an introductory guide, that integrates related topics
and provides practical advice for text mining.

Historically, these methods have their antecedents in several research communi-
ties, many originally associated with artificial intelligence, including the specialized
fields of informational retrieval, knowledge discovery and data mining, and natural
language.
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1.9 Summary

Text mining and data mining are contrasted relative to automated prediction. Models
are constructed by training on samples of unstructured documents, and results are
projected to new text. A standard data format for input to prediction methods is
described. The key objective of data preparation is to transform text into a numerical
format, eventually sharing a common representation with numerical data mining.
Different text-mining tasks are introduced that fit within a predictive framework
for machine-learning. These include document classification, information retrieval,
clustering of documents, information extraction, and performance evaluation.

1.10 Historical and Bibliographical Remarks

The roots ofwhatwe nowcall textmining are deep in the area of information retrieval.
Document classification is similar in many ways to document indexing which was
extensively studied in the late 1950s and 1960s (Luhn 1959;Maron andKuhns 1960).
Document clustering and measurement of document similarity are also old topics
(Jardine and van Rijsbergen 1971). Representation of a document as a bag of words,
each with an attached frequency measure, became popular by the 1970s (Salton
et al. 1975). As artificial intelligence methods became more popular in the 1980s,
they alsowere applied to problemswe nowclassify as textmining. This is particularly
true of text categorization (Hayes and Weinstein 1990).

The real impetus for the kinds of applications we see today comes from two
sources: the availability of cheap, fast computing and of enormous amounts of text
in digital form. In the past, when text collections were formed by punching them
into cards or paper tape before being read into an expensive computer with limited
memory, only a few centers could do the kinds of experiments now conducted on
desktop computer systems.

Much of the advancement of technology in text mining has come in connection
with government-sponsored challenge competitions, each capped by a conference in
which the participants present their results. Examples include the MUC (Message
Understanding Conference), which concluded with MUC-7, TREC (Text Retrieval
Conference), CoNLL (Conference on Natural Language Learning), and ACE (Auto-
matic Content Extraction) conferences. More general conferences of interest include
the ACL (Association for Computational Linguistics) meetings, KDD (Knowledge
Discovery and Data Mining), IJCAI (International Joint Conference on Artificial
Intelligence), and the International Machine Learning Conference.

Although there is some overlap of interests, particularly in information extrac-
tion, for the most part our concerns and interests are quite different from those of
the natural language processing community. For example, we exclude topics such
as parsing (although we will discuss the utility of parsed output), dialogue under-
standing, deep semantic representations, and the like. Computational linguists have
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turned to statistics in the study of some of these problems and sometimes use the
same or similar statistical methods. In particular, the speech understanding and pars-
ing communities make extensive use of hidden Markov models.

1.11 Questions and Exercises

1. How does information extraction differ from information retrieval?
2. Give any three differences between spreadsheets for text-mining data and spread-

sheets for general data-mining problems.
3. Browse the web for text mining software, and skim through the documentation

of a few tools to get a feel for the state-of-the-art.
4. Why is document classification best performed using binary classifiers?



Chapter 2
From Textual Information
to Numerical Vectors

To mine text, we first need to process it into a form that data-mining procedures
can use. As mentioned in the previous chapter, this typically involves generating
features in a spreadsheet format. Classical data mining looks at highly structured
data. Our spreadsheet model is the embodiment of a representation that is supportive
of predictive modeling. In some ways, predictive text mining is simpler and more
restrictive than open-ended data mining. Because predictive mining methods are so
highly developed, most time spent on data-mining projects is for data preparation.
We say that text mining is unstructured because it is very far from the spreadsheet
model that we need to process data for prediction. Yet, the transformation of data
from text to the spreadsheet model can be highly methodical, and we have a carefully
organized procedure to fill in the cells of the spreadsheet. First, of course, we have
to determine the nature of the columns (i.e., the features) of the spreadsheet. Some
useful features are easy to obtain (e.g., a word as it occurs in text) and some are
much more difficult (e.g., the grammatical function of a word in a sentence such
as subject, object, etc.). In this chapter, we will discuss how to obtain the kinds of
features commonly generated from text.

2.1 Collecting Documents

Clearly, the first step in textmining is to collect the data (i.e., the relevant documents).
In many text-mining scenarios, the relevant documents may already be given or they
may be part of the problemdescription. For example, aWeb page retrieval application
for an intranet implicitly specifies the relevant documents to be the Web pages on
the intranet. If the documents are readily identified, then they can be obtained, and
the main issue is to cleanse the samples and ensure that they are of high quality.
As with nontextual data, human intervention can compromise the integrity of the
document collection process, and hence extreme care must be exercised. Sometimes,
the documents may be obtained from document warehouses or databases. In these
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scenarios, it is reasonable to expect that data cleansing was done before deposit and
we can be confident in the quality of the documents.

In some applications, onemay need to have a data collection process. For instance,
for a Web application comprising a number of autonomous Web sites, one may
deploy a software tool such as a Web crawler that collects the documents. In other
applications, one may have a logging process attached to an input data stream for a
length of time. For example, an e-mail audit application may log all incoming and
outgoing messages at a mail server for a period of time.

Sometimes the set of documents can be extremely large and data-sampling tech-
niques can be used to select a manageable set of relevant documents. These sampling
techniques will depend on the application. For instance, documents may have a time
stamp, and more recent documents may have a higher relevance. Depending on our
resources, we may limit our sample to documents that are more useful.

For research and development of text-mining techniques, more generic data may
be necessary. This is usually called a corpus. Many published studies have used a
collection of Reuters news stories, referred to as Reuters corpus RCV1, obtainable
from the Reuters Corporation Web site. However, there are many other corpora
available that may be more appropriate for some studies.

In the early days of text processing (1950s and 1960s), one million words was
considered a very large collection. Thiswas the size of one of the firstwidely available
collections, theBrown corpus, consisting of 500 samples of about 2000words each of
American English texts of varying genres. A European corpus, the Lancaster-Oslo-
Bergen corpus (LOB), wasmodeled on the Brown corpus but was for British English.
Both these are still available and still used. In the 1970s and 1980s, many more
resources became available, some from academic initiatives and others as a result of
government-sponsored research. Some widely used corpora are the Penn Tree Bank,
a collection of manually parsed sentences from the Wall Street Journal; the TREC
(Text Retrieval and Evaluation Conferences) collections, consisting of selections
from the Wall Street Journal, the New York Times, Ziff-Davis Publications, the
Federal Register, and others; the proceedings of the Canadian Parliament in parallel
English–French translations, widely used in statistical machine translation research;
and the Gutenberg Project, a very large collection of literary and other texts put
into machine-readable form as the material comes out of copyright. A collection of
Reuters news stories called Reuters-21578 Distribution 1.0 has been widely used in
studying methods for text categorization.

As the importance of large text corpora became evident, a number of organizations
and initiatives arose to coordinate activity and provide a distribution mechanism for
corpora. Two of the main ones are the Linguistic Data Consortium (LDC) housed at
the University of Pennsylvania and the International Computer Archive of Modern
and Medieval English (ICAME), which resides in Bergen, Norway. Many other
centers of varying size exist in academic institutions. The Text Encoding Initiative
(TEI) is a standard for text collections sponsoredby anumber of professional societies
concerned with language processing. There a number of Web sites devoted to corpus
linguistics, most having links to collections, courses, software, etc.
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Another resource to consider is the World Wide Web itself. Web crawlers can
build collections of pages from a particular site, such as Yahoo, or on a particular
topic. Given the size of the Web, collections built this way can be huge. The main
problemwith this approach to document collection is that the data may be of dubious
quality and require extensive cleansing before use. A more focused corpus can be
built from the archives of USENET news groups and accessible from many ISPs
directly or through Google Groups. These discussion groups cover a single topic,
such as fly fishing, or broader topics such as the cultures of particular countries. A
similar set of discussions is available from LISTSERVs. These are almost always
available only by subscribing to a particular group but have the advantage that many
lists have long-term archives.

Finally, institutions such as government agencies and corporations often have
large document collections. Corporate collections are usually not available outside
the corporation, but government collections often are. One widely studied collection
is theMEDLINEdata set from theNational Institutes ofHealth,which contains a very
large number of abstracts on medical subjects. The advantage of getting documents
from such sources is that one can be reasonably sure that the data have been reviewed
and are of good quality.

2.2 Document Standardization

Once the documents are collected, it is not uncommon to find them in a variety of
different formats, depending on how the documents were generated. For example,
some documents may have been generated by a word processor with its own propri-
etary format; others may have been generated using a simple text editor and saved as
ASCII text; and some may have been scanned and stored as images. Clearly, if we
are to process all the documents, it’s helpful to convert them to a standard format.

The computer industry as a whole, including most of the text-processing com-
munity, has adopted XML (Extensible Markup Language) as its standard exchange
format, and this is the standardwe adopt for our document collections aswell. Briefly,
XML is a standard way to insert tags onto a text to identify its parts. Although tags
can be nested within other tags to arbitrary depth, we will use that capability only
sparingly here. We assume that each document is marked off from the other docu-
ments in the corpus by having a distinguishing tag at the beginning, such as<DOC>.
By XML convention, tags come in beginning and ending pairs. They are enclosed in
angle brackets, and the ending tag has a back slash immediately following the opening
angle bracket. Within a document, there can be many other tags to mark off sections
of the document. Common sections are <DATE>, <SUBJECT>, <TOPIC>, and
<TEXT>. We will focus mainly on<SUBJECT>,<TOPIC>, and<TEXT>. The
names are arbitrary. They could just as well be <HEADLINE> and <BODY>.
An example of an XML document is shown in Fig. 2.1, where the document has a
distinguishing tag of <DOC>.
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<DOC>
<TEXT>
<TITLE>
Solving Regression Problems with Rule-based Classifiers
</TITLE>
<AUTHORS>
<AUTHOR>
Nitin Indurkhya
</AUTHOR>
<AUTHOR>
Sholom M. Weiss
</AUTHOR>
</AUTHORS>
<ABSTRACT>
We describe a lightweight learning method that induces an ensemble
of decision-rule solutions for regression problems. Instead of
direct prediction of a continuous output variable, the method
discretizes the variable by k-means clustering and solves the
resultant classification problem. Predictions on new examples are
made by averaging the mean values of classes with votes that are
close in number to the most likely class. We provide experimental
evidence that this indirect approach can often yield strong
results for many applications, generally outperforming direct
approaches such as regression trees and rivaling bagged regression
trees.
</ABSTRACT>
</TEXT>
</DOC>

Fig. 2.1 An XML document

Many currently available corpora are already in this format (e.g., the corpora
available from Reuters). The main reason for identifying the pieces of a document
consistently is to allow selection of those parts that will be used to generate features.
We will almost always want to use the part delimited as<TEXT> but may also want
to include parts marked <SUBJECT>, <HEADLINE>, or the like. Additionally,
for text classification or clustering, one wants to generate features from a TOPIC
section if there is one. Selected document parts may be concatenated into a single
string of characters or may be kept separate if one wants to distinguish the features
generated from the headline, say, from those generated from the document body, and
perhaps weight them differently.

Many word processors these days allow documents to be saved in XML format,
and stand-alone filters can be obtained to convert existing documents without having
to process each one manually. Documents encoded as images are harder to deal with.
There are some OCR (optical character recognition) systems that can be useful, but
these can introduce errors in the text and must be used with care.

Why should we care about document standardization? The main advantage of
standardizing the data is that the mining tools can be applied without having to
consider the pedigree of the document. For harvesting information from a document,
it is irrelevant what editor was used to create it or what the original format was. The
software tools need to read data just in one format, and not in the many different
formats they came in originally.



2.3 Tokenization 17

2.3 Tokenization

Assume the document collection is in XML format and we are ready to examine the
unstructured text to identify useful features. The first step in handling text is to break
the stream of characters into words or, more precisely, tokens. This is fundamental to
further analysis. Without identifying the tokens, it is difficult to imagine extracting
higher-level information from the document. Each token is an instance of a type, so
the number of tokens is much higher than the number of types. As an example, in
the previous sentence there are two tokens spelled “the.” These are both instances
of a type “the,” which occurs twice in the sentence. Properly speaking, one should
always refer to the frequency of occurrence of a type, but loose usage also talks about
the frequency of a token. Breaking a stream of characters into tokens is trivial for
a person familiar with the language structure. A computer program, though, being
linguistically challenged, would find the task more complicated. The reason is that
certain characters are sometimes token delimiters and sometimes not, depending
on the application. The characters space, tab, and newline we assume are always
delimiters and are not counted as tokens. They are often collectively called white
space. The characters () <>!?” are always delimiters and may also be tokens. The
characters . , : - ’ may or may not be delimiters, depending on their environment.

A period, comma, or colon between numbers would not normally be considered a
delimiter but rather part of the number. Any other comma or colon is a delimiter and
may be a token. A period can be part of an abbreviation (e.g., if it has a capital letter
on both sides). It can also be part of an abbreviation when followed by a space (e.g.,
Dr.). However, some of these are really ends of sentences. The problem of detecting
when a period is an end of sentence and when it is not will be discussed later. For
the purposes of tokenization, it is probably best to treat any ambiguous period as a
word delimiter and also as a token.

The apostrophe also has a number of uses. When preceded and followed by non-
delimiters, it should be treated as part of the current token (e.g., isn’t or D’angelo).
When followed by an unambiguous terminator, it might be a closing internal quote
or might indicate a possessive (e.g., Tess’). An apostrophe preceded by a terminator
is unambiguously the beginning of an internal quote, so it is possible to distinguish
the two cases by keeping track of opening and closing internal quotes.

A dash is a terminator and a token if preceded or followed by another dash. A dash
between two numbers might be a subtraction symbol or a separator (e.g., 555-1212
as a telephone number). It is probably best to treat a dash not adjacent to another
dash as a terminator and a token, but in some applications it might be better to treat
the dash, except in the double dash case, as simply a character.

An example of pseudocode for tokenization is shown in Fig. 2.2. To get the best
possible features, one should always customize the tokenizer for the available text—
otherwise extraworkmay be required after the tokens are obtained. The reader should
note that the tokenization process is language-dependent. We, of course, focus on
documents in English. For other languages, although the general principles will be
the same, the details will differ.
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Fig. 2.2 Tokenization algorithm
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2.4 Lemmatization

Once a character stream has been segmented into a sequence of tokens, the next
possible step is to convert each of the tokens to a standard form, a process usually
referred to as stemming or lemmatization. Whether or not this step is necessary is
application-dependent. For the purpose of document classification, stemming can
provide a small positive benefit in some cases. Notice that one effect of stemming is
to reduce the number of distinct types in a text corpus and to increase the frequency
of occurrence of some individual types. For example, in the previous sentence, the
two instances of “types” would be reduced to the stem “type” and would be counted
as instances of that type, along with instances of the tokens “type” and “typed.”
For classification algorithms that take frequency into account, this can sometimes
make a difference. In other scenarios, the extra processing may not provide any
significant gains.

2.4.1 Inflectional Stemming

In English, as in many other languages, words occur in text in more than one form.
Any native English speaker will agree that the nouns “book” and “books” are two
formsof the sameword.Often, but not always, it is advantageous to eliminate this kind
of variation before further processing (i.e., to normalize bothwords to the single form
“book”). When the normalization is confined to regularizing grammatical variants
such as singular/plural andpresent/past, the process is called “inflectional stemming.”
In linguistic terminology, this is called “morphological analysis.” In some languages,
for example Spanish,morphological analysis is comparatively simple. For a language
such as English, with many irregular word forms and nonintuitive spelling, it is more
difficult. There is no simple rule, for example, to bring together “seek” and “sought.”
Similarly, the stem for “rebelled” is “rebel,” but the stem for “belled” is “bell.” In other
languages, inflections can take the form of infixing, as, in the German “angeben”
(declare), for which the past participle is “angegeben.”

Returning to English, an algorithm for inflectional stemming must be part rule-
based and part dictionary-based. Any stemming algorithm for English that operates
only on tokens, without more grammatical information such as part-of-speech, will
make some mistakes because of ambiguity. For example, is “bored” the adjective
as in “he is bored” or is it the past tense of the verb “bore”? Furthermore, is the
verb “bore” an instance of the verb “bore a hole,” or is it the past tense of the
verb “bear”? In the absence of some often complicated disambiguation process, a
stemming algorithm should probably pick the most frequent choice. Pseudocode for
a somewhat simplified inflectional stemmer for English is given in Fig. 2.3. Notice
how the algorithm consists of rules that are applied in sequence until one of them is
satisfied. Also notice the frequent referrals to a dictionary, usually referred to as a
stemming dictionary. Although the inflectional stemmer is not expected to be perfect,
it will correctly identify quite a significant number of stems.
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Fig. 2.3 Inflectional stemming algorithm
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2.4.2 Stemming to a Root

Some practitioners have felt that normalization more aggressive than inflectional
stemming is advantageous for at least some text-processing applications. The intent
of these stemmers is to reach a root form with no inflectional or derivational prefixes
and suffixes. For example, “denormalization” is reduced to the stem “norm.” The end
result of such aggressive stemming is to reduce the number of types in a text collection
very drastically, thereby making distributional statistics more reliable. Additionally,
wordswith the same coremeaning are coalesced, so that a concept such as “apply” has
only one stem, although the textmay have “reapplied”, “applications”, etc.We cannot
make any broad recommendations as to when or when not to use such stemmers.
The usefulness of stemming is very much application-dependent. When in doubt, it
doesn’t hurt to try both with and without stemming if one has the resources to do so.

2.5 Vector Generation for Prediction

Consider the problem of categorizing documents. The characteristic features of doc-
uments are the tokens or words they contain. So without any deep analysis of the
linguistic content of the documents, we can choose to describe each document by
features that represent the most frequent tokens. Figure2.4 describes this process.

The collective set of features is typically called adictionary. The tokens orwords in
the dictionary form the basis for creating a spreadsheet of numeric data corresponding
to the document collection. Each row is a document, and each column represents a
feature. Thus, a cell in the spreadsheet is a measurement of a feature (corresponding
to the column) for a document (corresponding to a row). We will soon introduce
the predictive methods that learn from such data. But let us first explore the various
nuances of this data model and how it might influence the learning methods. In
the most basic model of such data, we simply check for the presence or absence of
words, and the cell entries are binary entries corresponding to a document and aword.
The dictionary of words covers all the possibilities and corresponds to the number
of columns in the spreadsheet. The cells will all have ones or zeros, depending on
whether the words were encountered in the document.

If a learningmethod can deal with the high dimensions of such a global dictionary,
this simplemodel of data can be very effective. Checking for words is simple because
we do not actually check each word in the dictionary. We build a hash table of the
dictionary words and see whether the document’s words are in the hash table. Large
samples of digital documents are readily available. This gives us confidence thatmany
variations and combinations of words will show up in the sample. This expectation
argues for spending less computational time preparing the data to look for similar
words or remove weak words. Let the speedy computer find its own way during the
learning process.
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Fig. 2.4 Generating features
from tokens

Table 2.1 Dictionary
reduction techniques

Local dictionary

Stopwords

Frequent words

Feature selection

Token reduction: stemming, synonyms

But, in many circumstances, we may want to work with a smaller dictionary.
The sample may be relatively small, or a large dictionary may be unwieldy. In such
cases, we might try to reduce the size of the dictionary by various transformations
of a dictionary and its constituent words. Depending on the learning method, many
of these transformations can improve predictive performance. Table2.1 lists some of
the transformations that can be performed.

If prediction is our goal, we need onemore column for the correct answer (or class)
for each document. In preparing data for a learning method, this information will be
available from the document labels. Our labels are generally binary, and the smaller
class is almost always the one of interest. Instead of generating a global dictionary
for both classes, we may consider only words found in the class that we are trying
to predict. If this class is far smaller than the negative class, which is typical, such a
local dictionary will be far smaller than the global dictionary.

Another obvious reduction in dictionary size is to compile a list of stopwords
and remove them from the dictionary. These are words that almost never have any
predictive capability, such as articles a and the and pronouns such as it and they.
These common words can be discarded before the feature generation process, but
it’s more effective to generate the features first, apply all the other transformations,
and at the very last stage reject the ones that correspond to stopwords.
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Frequency information on the word counts can be quite useful in reducing dic-
tionary size and can sometimes improve predictive performance for some methods.
The most frequent words are often stopwords and can be deleted. The remaining
most frequently used words are often the important words that should remain in a
local dictionary. The very rare words are often typos and can also be dismissed. For
some learning methods, a local dictionary of the most frequent words, perhaps less
than 200, can be surprisingly effective.

An alternative approach to local dictionary generation is to generate a global
dictionary from all documents in the collection. Special feature selection routines
will attempt to select a subset of words that appear to have the greatest potential
for prediction. These selection methods are often complicated and independent of
the prediction method. Generally, we do not use them and rely on just frequency
information, which is quite easy to determine. Any of the feature selection methods
that have been used in alternative statistical or machine-learning settings may be
tried. Many of these have been developed for real variables and without an emphasis
on discrete or binary attributes. Some text-specific methods will be described later
on in Sect. 2.5.3, but many of the prediction methods have already been adjusted
for text to deal with larger dictionaries rather than repeatedly generating smaller
dictionaries. If many classes must be determined, then the generation of a smaller
dictionary must be repeated for each prediction problem. For example, if we have
100 topics to categorize, then we have 100 binary prediction problems to solve. Our
choices are 100 small dictionaries or one big one. Typically, the vectors implied by
a spreadsheet model will also be regenerated to correspond to the small dictionary.

Instead of placing every possible word in the dictionary, we might follow the path
of the printed dictionary and avoid storing every variation of the same word. The
rationale for this is that all the variants really refer to the same concept. There is no
need for singular and plural. Many verbs can be stored in their stem form. Extending
the concept, we can also map synonyms to the same token. Of course, this adds a
layer of complexity to the processing of text. The gains in predictive performance
are relatively modest, but the dictionary size will obviously be reduced. Stemming
can occasionally be harmful for some words. If we apply a universal procedure that
effectively trims words to their root form, wewill encounter occasions where a subtle
difference in meaning is missed. The words “exit” and “exiting” may appear to have
identical roots, but in the context of programming and error messages, they may have
different meanings. Overall, stemming will achieve a large reduction in dictionary
size and is modestly beneficial for predictive performance when using a smaller
dictionary.

In general, the smaller the dictionary, the more intelligence in its composition
is needed to capture the most and best words. The use of tokens and stemming are
examples of helpful procedures in composing smaller dictionaries. All these efforts
will pay off in improved manageability of learning and perhaps improved accuracy.
If nothing else is gained, learning can proceedmore rapidly with smaller dictionaries.

Once the set of features has been determined, the document collection can be
converted to spreadsheet format. Figure2.5 shows an example of how this can be
done for binary features. Each column in the spreadsheet corresponds to a feature.
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Fig. 2.5 Converting
documents to a spreadsheet

Table 2.2 Dictionary feature
transformations

Word pairs, collocations

Frequencies

tf-idf

For interpretability, we will need to keep the list of features to translate from column
number to feature name. And, of course, we will still need the document collection
to be able to refer back to the original documents from the rows.

We have presented a model of data for predictive text mining in terms of a spread-
sheet that is populated by ones or zeros. These cells represent the presence of the
dictionary’s words in a document collection. To achieve the best predictive accuracy,
wemight consider additional transformations from this representation. Table2.2 lists
three different transformations that may improve predictive capabilities.

Word pairs and collocations are simple examples of multiword features discussed
in more detail in Sect. 2.5.1. They serve to increase the size of the dictionary but can
improve predictive performance in certain scenarios.

Instead of zeros or ones as entries in the cells of the spreadsheet, the actual
frequency of occurrence of the word could be used. If a word occurs ten times in a
document, this count would be entered in the cell. We have all the information of a
binary representation, andwe have some additional information to contrast with other
documents. For some learning methods, the count does give a slightly better result.
It also may lead to more compact solutions because it includes the same solution
space as the binary data model, yet the additional frequency information may yield
a simpler solution. This is especially true of some learning methods whose solutions
use only a small subset of the dictionary words. Overall, the frequencies are helpful
in prediction but add complexity to the proposed solutions. One compromise that
works quite well is to have a three-valued system for cell entries: a one or zero as
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Table 2.3 Thresholding
frequencies to three values

0—word did not occur

l—word occurred once

2—word occurred 2 or more times

in the binary representation, with the additional possibility of a 2. Table2.3 lists
the three possibilities, where we map all occurrences of more than two times into
a maximum value of 2. Such a scheme seems to capture much of the added value
of frequency information without adding much complexity to the model. Another
variant involves zeroing values belowa certain threshold on the plausible grounds that
tokens should have a minimum frequency before being considered of any use. This
can reduce the complexity of the spreadsheet significantly and might be a necessity
for some data-mining algorithms. Besides simple thresholding, there are a variety
of more sophisticated methods to reduce the spreadsheet complexity such as the use
of chi-square, mutual information, odds ratio and others. Mutual information can be
helpful when considering multiword features.

The next step beyond counting the frequency of a word in a document is to
modify the count by the perceived importance of that word. The well-known tf-idf
formulation has been used to compute weightings or scores for words. Once again,
the values will be positive numbers so that we capture the presence or absence of the
word in a document. In (2.1), we see that the tf-idf weight assigned to word j is the
term frequency (i.e., the word count) modified by a scale factor for the importance
of the word. The scale factor is called the inverse document frequency, which is
given in (2.2). It simply checks the number of documents containing word j (i.e.,
df( j)) and reverses the scaling. Thus, when a word appears in many documents, it is
considered unimportant and the scale is lowered, perhaps near zero. When the word
is relatively unique and appears in few documents, the scale factor zooms upward
because it appears important.

tf-idf( j) = tf( j) ∗ idf( j), (2.1)

idf( j) = log

(
N

df( j)

)
. (2.2)

Alternative versions of the basic tf-idf formulation exist, but the generalmotivation
is the same. The net result of this process is a positive score that replaces the simple
frequency or binary true-or-false entry in the cell of our spreadsheet. The bigger the
score, the more important its expected value to the learning method. Although this
transformation is only a slight modification of our original binary-feature model, it
does lose the clarity and simplicity of the earlier presentation.

Another variant is to weight the tokens from different parts of the document
differently. For example, the words in the subject line of a document could receive
additional weight. An effective variant is to generate separate sets of features for the
categories (for each category, the set of features is derived only from the tokens of
documents of that category) and then pool all the feature sets together.
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Fig. 2.6 Spreadsheet to
sparse vectors

All of these models of data are modest variations of the basic binary model for the
presence or absence of words. Which of the data transformations are best? We will
not give a universal answer. Experience has shown that the best prediction accuracy
is dependent on mating one of these variations to a specific learning method. The
best variation for one method may not be the one for another method. Is it necessary
to test all variations with all methods? When we describe the learning methods, we
will give guidelines for the individual methods based on general research experience.
Moreover, some methods have a natural relationship to one of these representations,
and that alone would make them the preferred approach to representing data.

Much effort has been expended in transforming this word model of data into
a somewhat more cryptic presentation. The data remain entries in the spreadsheet
cells, but their value may be less intelligible. Some of these transformations are
techniques for reducing duplication and dimensions. Others are based on careful
empirical experimentation that supports their value in increased predictive capabili-
ties. We will discuss several classes of prediction methods. They tend to work better
with different types of data transformations.

Although we describe data as populating a spreadsheet, we expect that most of
the cells will be zero. Most documents contain a small subset of the dictionary’s
words. In the case of text classification, a text corpus might have thousands of word
types. Each individual document, however, has only a few hundred unique tokens.
So, in the spreadsheet, almost all of the entries for that document will be zero. Rather
than store all the zeros, it is better to represent the spreadsheet as a set of sparse
vectors, where a row is represented by a list of pairs, one element of the pair being
a column number and the other element being the corresponding nonzero feature
value. By not storing the zeros, savings in memory can be immense. Processing
programs can be easily adapted to handle this format. Figure2.6 gives a simple
example of how a spreadsheet is transformed into sparse vectors. All of our proposed
data representations are consistent with such a sparse data representation.

2.5.1 Multiword Features

Generally, features are associated with single words (tokens delimited by white
space). Although this is reasonable most of the time, there are cases where it helps
to consider a group of words as a feature. This happens when a number of words are
used to describe a concept that must be made into a feature. The simplest scenario is
where the feature space is extended to include pairs of words. Instead of just separate
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features for bon and vivant, we could also have a feature for bon vivant. But why
stop at pairs? Why not consider more general multiword features?

The most common example of this is a named entity, for example Don Smith
or United States of America. Unlike word pairs, the words need not necessarily
be consecutive. For example, in specifying Don Smith as a feature, we may want to
ignore the fact that he has amiddle name of Leroy that may appear in some references
to the person. Another example of a multiword feature is an adjective followed by
a noun, such as broken vase. In this case, to accommodate many references to the
noun that involve a number of adjectives with the desired adjective not necessarily
adjacent to the noun, we must permit some flexibility in the distance between the
adjective and noun. In the same example of the vase, we want to accept a phrase
such as broken and dirty vase as an instance of broken vase. An even more abstract
case is when words simply happen to be highly correlated in the text. For instance,
in stories about Germany boycotting product Y, the word-stem German would be
highly correlated with the wordstem boycott within a small window (say, fivewords).
Thus, more generally, multiword features consist of x number of words occurring
within a maximum window size of y (with y ≥ x naturally).

The key question is how such features can be extracted from text. How smart
do we have to be in finding such features? Named entities can be extracted using
specialized methods. For other multiword features, a more general approach might
be to treat them like single-word features. If we use a frequency approach, then we
will only include those combinations of words that occur relatively frequently. A
straightforward implementation would simply examine all combinations of up to x
words within a window of y words. Clearly, the number of potential features grows
significantly when multiword features are considered.

Measuring the value of multiword features is typically done by considering cor-
relation between the words in potential multiword features. A variety of measures
based on mutual information or the likelihood ratio may be used for this purpose.
For example, in some tools, (2.3), which computes an association measure AM for
the multiword T , is used for evaluating multiword features, where size(T ) is the
number of words in phrase T and freq(T ) is the number of times phrase T occurs in
the document collection.

AM(T ) = size(T ) log10(freq(T ))freq(T )∑
wordi ∈T freq(wordi )

. (2.3)

Other variations can occur depending on whether stopwords are excluded before
building multiword features.

Analgorithm for generatingmultiword features is shown inFig. 2.7,which extends
Fig. 2.4 to multiword features. A straightforward implementation can consume a lot
of memory, but a more efficient implementation uses a sliding window to generate
potential multiwords in a single pass over the input text without having to store too
many words in memory.
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Fig. 2.7 Generating multiword features from tokens

Generally, multiword features are not found too frequently in a document col-
lection, but when they do occur they are often highly predictive. They are also
particularly satisfying for explaining a learning method’s proposed solution. The
downside to using multiwords is that they add an additional layer of complexity to
the processing of text, and some practitioners may feel it’s the job of the learning
methods to combine the words without a preprocessing step to compose multiword
features. However, if the learning method is not capable of doing this, the extra effort
may be worthwhile because multiwords are often highly predictive and enhance the
interpretability of results.
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2.5.2 Labels for the Right Answers

For prediction, an extra column must be added to the spreadsheet. This last column
of the spreadsheet, containing the label, looks no different from the others. It is a
one or zero indicating that the correct answer is either true or false. What is the
label? Traditionally, this label has been a topic to index the document. Sports or
financial stories are examples of topics. We are not making this semantic distinction.
Any answer that can be measured as true or false is acceptable. It could be a topic or
category, or it could be an article that appeared prior to a stock price’s rise. As long as
the answers are labeled correctly relative to the concept, the format is acceptable. Of
course, that doesn’t mean that the problem can readily be solved. In the sparse vector
format, the labels are appended to each vector separately as either a one (positive
class) or a zero (negative class).

2.5.3 Feature Selection by Attribute Ranking

In addition to the frequency-based approaches mentioned earlier, feature selection
can be done in a number of different ways. In general, we want to select a set of
features for each category to form a local dictionary for the category. A relatively
simple and quite useful method for doing so is by independently ranking feature
attributes according to their predictive abilities for the category under consideration.
In this approach, we can simply select the top-ranking features.

The predictive ability of an attribute can be measured by a certain quantity that
indicates how correlated a feature is with the class label. Assume that we have n
documents, and x j is the presence or absence of attribute j in a document x . We also
use y to denote the label of the document; that is, the last column in our spreadsheet
model. A commonly used ranking score is the information gain criterion, which can
be defined as

I G( j) = Llabel − L( j),

where

Llabel =
1∑

c=0

Pr(y = c) log2
1

Pr(y = c)
, (2.4)

L( j) =
1∑

v=0

Pr(x j = v)

1∑
c=0

Pr(y = c|x j = v) log2
1

Pr(y = c|x j = v)
. (2.5)

The quantity L( j) is the number of bits required to encode the label and the attribute
j minus the number of bits required to encode the attribute j . That is, L( j) is
the number of bits needed to encode the label given that we know the attribute j .
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Therefore, the information gain Llabel − L( j) is the number of bits we can save for
encoding the class label if we know the feature j . It measures how useful a feature
j is from the information-theoretical point of view.

Since Llabel is the same for all j , we can simply compute L( j) for all attributes j
and select the ones with the smallest values. Quantities that are needed to compute
L( j) in (2.5) can be easily estimated using the following plug-in estimators:

Pr(x j = v) = freq(x j = v) + 1

n + 2
,

Pr(y = c|x j = v) = freq(x j = v, label = c) + 1

freq(x j = v) + 2
.

2.6 Sentence Boundary Determination

If the XML markup for a corpus does not mark sentence boundaries, it is often
necessary for these to be marked. At the very least, it is necessary to determine when
a period is part of a token andwhen it is not. Formore sophisticated linguistic parsing,
the algorithms often require a complete sentence as input. We shall also see other
information extraction algorithms that operate on text a sentence at a time. For these
algorithms to perform optimally, the sentences must be identified correctly. Sentence
boundary determination is essentially the problem of deciding which instances of a
period followed by whitespace are sentence delimiters and which are not since we
assume that the characters? and ! are unambiguous sentence boundaries. Since this
is a classification problem, one can naturally invoke standard classification software
on training data and achieve accuracy of more than 98%. This is discussed at some
length in Sect. 2.12. However, if training data are not available, one can use a hand-
crafted algorithm.

Figure2.8 gives an algorithm that will achieve an accuracy of more than 90%
on newswire text. Adjustments to the algorithm for other corpora may be necessary
to get better performance. Notice how the algorithm is implicitly tailored for Eng-
lish. A different language would have a completely different procedure but would
still involve the basic idea of rules that examine the context of potential sentence
boundaries.

2.7 Part-of-Speech Tagging

Once a text has been broken into tokens and sentences, the next step depends on what
is to be done with the text. If no further linguistic analysis is necessary, one might
proceed directly to feature generation, in which the features will be obtained from the
tokens.However, if the goal ismore specific, say recognizing names of people, places,



2.7 Part-of-Speech Tagging 31

Fig. 2.8 End-of-sentence detection algorithm

and organizations, it is usually desirable to perform additional linguistic analyses of
the text and extract more sophisticated features. Toward this end, the next logical
step is to determine the part of speech (POS) of each token.

In any natural language, words are organized into grammatical classes or parts of
speech. Almost all languages will have at least the categories we would call nouns
and verbs. The exact number of categories in a given language is not something
intrinsic but depends on how the language is analyzed by an individual linguist.

In English, some analyses may use as few as six or seven categories and others
nearly one hundred. Most English grammars would have as a minimum noun, verb,
adjective, adverb, preposition, and conjunction. A bigger set of 36 categories is used
in the Penn Tree Bank, constructed from the Wall Street Journal corpus discussed
later on. Table2.4 shows some of these categories.

Dictionaries showing word—POS correspondence can be useful but are not suffi-
cient. All dictionaries have gaps, but even for words found in the dictionary, several
parts of speech are usually possible. Returning to an earlier example, “bore” could
be a noun, a present tense verb, or a past tense verb. The goal of POS tagging is to
determine which of these possibilities is realized in a particular text instance.
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Table 2.4 Some of the
categories in the penn tree
bank POS set

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

POS Possessive ending

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

WDT Wh-determiner

Although it is possible, in principle, tomanually construct a part-of-speech tagger,
the most successful systems are generated automatically by machine-learning algo-
rithms from annotated corpora. Almost all POS taggers have been trained on theWall
Street Journal corpus available from LDC (Linguistic Data Corporation, www.ldc.
upenn.edu) because it is the most easily available large annotated corpus. Although
the WSJ corpus is large and reasonably diverse, it is one particular genre, and one
cannot assume that a tagger based on the WSJ will perform as well on, for example,
e-mail messages. Because much of the impetus for work on information extraction
has been sponsored by the military, whose interest is largely in the processing of
voluminous news sources, there has not been much support for generating large
training corpora in other domains.

2.8 Word Sense Disambiguation

English words, besides being ambiguous when isolated from their POS status, are
also very often ambiguous as to their meaning or reference. Returning once again to
the example “bore,” one cannot tell without context, even after POS tagging, if the

www.ldc.upenn.edu
www.ldc.upenn.edu
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word is referring to a person—“he is a bore”—or a reference to a hole, as in “the
bore is not large enough.” The main function of ordinary dictionaries is to catalog the
variousmeanings of aword, but they are not organized for use by a computer program
for disambiguation. A large, long-running project that focused on word meanings
and their interrelationships is Wordnet, which aimed to fill in this gap. As useful
as Wordnet is, by itself it does not provide an algorithm for selecting a particular
meaning for a word in context. In spite of substantial work over a long period of time,
there are no algorithms that can completely disambiguate a text. In large part, this is
due to the lack of a huge corpus of disambiguated text to serve as a training corpus
for machine-learning algorithms. Available corpora focus on relatively few words,
with the aim of testing the efficacy of particular procedures. Unless a particular
text-mining project can be shown to require word sense disambiguation, it is best to
proceed without such a step.

2.9 Phrase Recognition

Once the tokens of a sentence have been assigned POS tags, the next step is to group
individual tokens into units, generally called phrases. This is useful both for creating
a “partial parse” of a sentence and as a step in identifying the “named entities”
occurring in a sentence, a topic we will return to in greater detail later on. There
are standard corpora and test sets for developing and evaluating phrase recognition
systems that were developed for various research workshops. Systems are supposed
to scan a text and mark the beginnings and ends of phrases, of which the most
important are noun phrases, verb phrases, and prepositional phrases. There are a
number of conventions for marking, but the most common is to mark a word inside
a phrase with I-, a word at the beginning of a phrase adjacent to another phrase with
B-and a word outside any phrase with O. The I-and B-tags can be extended with a
code for the phrase type: I-NP, B-NP, I-VP, B-VP, etc. Formulated in this way, the
phrase identification problem is reduced to a classification problem for the tokens of
a sentence, in which the procedure must supply the correct class for each token.

Performance varies widely over phrase type, although overall performance mea-
sures on benchmark test sets are quite good. A simple statistical approach to recog-
nizing significant phrases might be to consider multiword tokens. If a particular
sequence of words occurs frequently enough in the corpora, it will be identified as a
useful token.

2.10 Named Entity Recognition

Aspecialization of phrase finding, in particular nounphrase finding, is the recognition
of particular types of proper noun phrases, specifically persons, organizations, and
locations, sometimes along with money, dates, times, and percentages. The impor-
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tance of these recognizers for intelligence applications is easy to see, but they have
more mundane uses, particularly in turning verbose text data into a more compact
structural form.

From the point of view of technique, this is very like the phrase recognition
problem. One might even want to identify noun phrases as a first step. The same sort
of token-encoding pattern can be used (B-person, B-location, I-person, etc.), and the
problem is then one of assigning the correct class code to each token in a sentence.
We shall discuss this problem in detail in Chap.6 on information extraction.

2.11 Parsing

The most sophisticated kind of text processing we will consider, briefly, is the step of
producing a full parse of a sentence. By this, we mean that each word in a sentence
is connected to a single structure, usually a tree but sometimes a directed acyclic
graph. From the parse, we can find the relation of each word in a sentence to all the
others, and typically also its function in the sentence (e.g. subject, object, etc.). There
are very many different kinds of parses, each associated with a linguistic theory of
language. This is not the place to discuss these various theories. For our purposes, we
can restrict attention to the so-called “context-free” parses. One can envision a parse
of this kind as a tree of nodes in which the leaf nodes are the words of a sentence,
the phrases into which the words are grouped are internal nodes, and there is one
top node at the root of the tree, which usually has the label S. There are a number
of algorithms for producing such a tree from the words of a sentence. Considerable
research has been done on constructing parsers from a statistical analysis of tree
banks of sentences parsed by hand. The best-known and most widely used tree bank
is of parsed sentences from the Wall Street Journal and is available from LDC.

The reason for considering such a comparatively expensive process is that it
provides information that phrase identification or partial parsing cannot provide.
Consider a sentence such as “Johnson was replaced at XYZ Corp. by Smith.” for
which a simple parse is shown in Fig. 2.9.

From the linear order of phrases in a partial parse, onemight conclude that Johnson
replaced Smith. A parse that identifies the sentence as passive has information allow-
ing for the extraction of the correct relationship that “Smith replaced Johnson.”
Among the various grammars that can provide more information than a simple tree,
dependency grammars are becoming increasingly popular. This is due to the develop-
ment of efficient and accurate dependency parsers that seek to uncover dependencies
between words in a sentence. Especially in texts with a free and flexible word order,
these dependencies may not be arranged linearly. A dependency parse produced
verbatim by the Stanford Parser for our example is shown in Fig. 2.10. The numbers
are the word positions and allow the representation to handle multiple occurrences
of a word in a parsed sentence. Prepositions and conjunctions are collapsed to get
dependencies between contentwords. In this example, the dependencies clearly show
that Smith, identified as the agent, replaced Johnson, the subject of the sentence.

http://dx.doi.org/10.1007/978-1-4471-6750-1_6
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Fig. 2.9 Simple parse tree

Fig. 2.10 A dependency
parse

In general, dependency parsers are more efficient than classical phrase-structure
parsers due to their ability towork onwords one at a time rather thanwait for complete
phrases. The dependencies are also closer to the underlying semantic relationships
that are often being sought. As such, they are good candidate features to use in
text-mining.

2.12 Feature Generation

Although we emphasized that our focus is on statistical methods, the reason for the
linguistic processing described earlier is to identify features that can be useful for
text mining. As an example, we will consider how good features depend on the type
of object to be classified and how such features can be obtained using the processes
discussed so far.
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Let us consider the problem of segmenting a text into sentences. A hand-crafted
algorithm for this task was given earlier. However, let’s say we want to learn a set of
similar rules from training data instead. What sorts of features would we generate?
Since the object to be classified is a period, each feature vector corresponds to a
period occurring in the text. Now we need to consider what characteristics of the
surrounding text are useful features. From the algorithm, we can see that the useful
features are the characters or character classes near the period, including the character
of the token to which the period is attached and the characters of the following token.
Therefore, the necessary linguistic processing only involves tokenization of the text.

A more sophisticated example would be the identification of the part of speech
(POS) of each word in a text. This is normally done on a text that has first been
segmented into sentences. The influence of oneword on the part-of-speech of another
does not cross sentence boundaries. The object that a feature vector represents is a
token. Features that might be useful in identifying the POS are, for example, whether
or not the first letter is capitalized (marking a proper noun), if all the characters
are digits, periods, or commas (marking a number), if the characters are alternating
uppercase letters and periods (an abbreviation), and so on.Wemight have information
from a dictionary as to the possible parts of speech for a token. If we assume the
POS assignment goes left to right through a sentence, we have POS assignments of
tokens to the left as possible features. In any case, we have the identity of tokens
to the left and to the right. For example, “the” most likely precedes either a noun
or an adjective. So, for this task, we basically need tokenization plus analysis of the
tokens, plus perhaps some dictionaries that tell what the possibilities are for each
token in order to create a feature vector for each token.

The feature vector for a document is assigned a particular class (or set of classes).
The feature vector for classifying periods as End-Of-Sentence or not is assigned to
one of two classes. The feature vector for POS assignment has one of a finite set
of classes. The class of the feature vector for each token in the partial parsing task
was outlined above. These classes are not intrinsic or commonly agreed properties
of a token. They are invented constructs specific to the problem. Let us consider
what features are important for the feature vector for partial parsing. Token identity
is clearly one of these, as is the token POS. Additionally, the identity and POS of
the tokens to the left and right of the token whose vector is being constructed are
important features. So is the phrasal class of tokens to the left that have already been
assigned. Sentence boundaries are particularly important since phrases do not cross
them. Individual token features, on the other hand, are not important because they
have already been taken into account for POS assignment.

For named entity detection, the same kind of token class encoding scheme can
be used as in the chunking task (i.e., B-Person, I-Person, etc.). All the named enti-
ties are noun phrases, so it is possible but not necessary that a sentence will first be
segmented into noun phrases. This might result in unnecessary work since named
entities are typically made up of proper nouns. For this task, dictionaries can be
particularly important. One can identify tokens as instances of titles, such as “Doc-
tor” or “President,” providing clues as to the class of proper noun phrases to the
right. Other dictionaries can list words that are typically the end of organization
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names, like “Company,” “Inc.,” or “Department.” There are also widely available
gazetteers (i.e., lists of place names and lists of organization names). Identifying a
token as being a piece of such a dictionary entry is useful but not definitive because
of ambiguity of names (e.g., “Arthur Anderson” might be referring to a person or
to a company). Besides the dictionary information, other useful features are POS,
sentence boundaries, and the class of tokens already assigned.

2.13 Summary

Documents are composed of words, and machine learning methods process numeri-
cal vectors. This chapter discusses how words are transformed into vectors, readying
them for processing by predictive methods. Documents may appear in different for-
mats andmay be collected fromdifferent sources.Withminormodifications, they can
be organized and unified for prediction by specifying them in a standard descriptive
language, XML. The words or tokens may be further reduced to common roots by
stemming. These tokens are added to a dictionary. The words in a document can be
converted to vectors using local or global dictionaries. The value of each entry in the
vector will be based on measures of frequency of occurrence of words in a document
such as term frequency (tf and idf). An additional entry in a document vector is a label
of the correct answer, such as its topic. Dictionaries can be extended tomultiword fea-
tures like phrases. Dictionary size may be significantly reduced by attribute ranking.
The general approach is purely empirical, preparing data for statistical prediction.
Linguistic concepts are also discussed including part-of-speech tagging, word sense
disambiguation, phrase recognition, parsing and feature generation.

2.14 Historical and Bibliographical Remarks

A detailed account of linguistic processing issues can be found in Indurkhya and
Damerau (2010) and Jurafsky and Martin (2008). Current URLs for organizations
such as LDC, ICAME, TEI, the Oxford Text Archive, and the like are easily found
through a search engine. The new Reuters corpus, RCV1, is discussed in Lewis et al.
(2004) and is available directly from Reuters. The older Reuters-21578 Distribution
1.0 corpus is also available on the Internet at several sites. Using a search engine with
the query “download Reuters 21578” will provide a list of a number of sites where
this corpus can be obtained. There are a number of Web sites that have many links
to corpora in many languages. Again, use of a search engine with the query “corpus
linguistics” will give the URLs of active sites. There are many books on XML; for
example Ray (2001). The best-known algorithm for derivational regularization is
the Porter stemmer (Porter 1980), which is in the public domain. At the time of this
writing, it can be downloaded fromhttp://www.tartarus.org/~martin/PorterStemmer.
ANSI C, Java, and Perl versions are available. Another variation on stemming is to

http://www.tartarus.org/~martin/PorterStemmer
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base the unification of tokens into stems on corpus statistics (i.e., the stemming is
corpus based) (Xu and Croft 1998). For information retrieval, this algorithm is said
to provide better results than the more aggressive Porter stemmer.

For end-of-sentence determination, Walker et al. (2001) compares a hard-coded
program, a rule-based system, and a machine-learning solution on the periods and
some other characters in a collection of documents from the Web. The machine-
learning system was best of the three. The F-measures (see Sect. 3.5.1) were 98.37
for the machine-learning system, 95.82 for the rule-based system, and 92.45 for
the program. Adjusting a machine-learning solution to a new corpus is discussed in
Zhang et al. (2003).

Examples of part-of-speech taggers are Ratnaparkhi (1995) and Brill (1995). The
Brill tagger is in the public domain and is in wide use.

For a survey of work on word sense disambiguation, see Ide and Véronis (1998).
Wordnet is discussed in Feldbaum (1998). The database and a program to use it can
be obtained from the Internet at http://wordnet.princeton.edu.

Phrase recognition is also known as “text chunking” (Sang and Buchholz 2000).
A number of researchers have investigated this problem as classification, beginning
with Ramshaw and Marcus (1995). A variety of machine-learning algorithms have
been used: support vector machines (Kudoh and Matsumoto 2000), transformation-
based learning (Ramshaw and Marcus 1995), a linear classifier (Zhang et al. 2002),
and others. Many more details can be found at http://ifarm.nl/signll/conll.

Work on named entity recognition has been heavily funded by theUS government,
beginning with the Message Understanding Conferences and continuing with the
ACE project Further details can be obtained from the following sites:
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/index.html
http://www.itl.nist.gov/iaui/894.01/tests/ace/index.html.

A number of named entity recognition systems are available for license, such as
the Nymble system from BBN (Bikel et al. 1997). State of the art is about 90% in
recognition accuracy.

Algorithms for constructing context-free parse trees are discussed inEarley (1970)
and Tomita (1985). Constructing parsers from tree-banks is discussed in Charniak
(1997), Ratnaparkhi (1999), Chiang (2000), and others.

Phrase-structure and Dependency grammars have long been known to be strongly
equivalent (Gaifman 1965). An in-depth survey ofmodern approaches to dependency
parsing can be found in Kübler et al. (2009). The use of dependencies in conjunction
with other features for text classification is illustrated in Sidorov et al. (2013).

A number of organizations have posted demo versions of their parsers on Web
sites. These can be used to compare the output of different parsers on the same input
sentence. Three examples of such sites are:
http://www.agfl.cs.ru.nl/EP4IR/english.html
http://www.link.cs.cmu.edu/link/submit-sentence-4.html
http://www2.lingsoft.fi/cgi-bin/engcg.

Earlywork in feature generation for document classification includes (Lewis 1992;
Apté et al. 1994), and others. Tan et al. (2002) showed that bigrams plus single words
improved categorization performance in a collection of Web pages from the Yahoo

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
http://wordnet.princeton.edu
http://ifarm.nl/signll/conll
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/index.html
http://www.itl.nist.gov/iaui/894.01/tests/ace/index.html
http://www.agfl.cs.ru.nl/EP4IR/english.html
http://www.link.cs.cmu.edu/link/submit-sentence-4.html
http://www2.lingsoft.fi/cgi-bin/engcg
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Science groups. The better performance was attributed to an increase in recall. A
special issue of the Journal of Machine Learning Research, in 2003 was devoted to
feature selection and is available online. One of the papers (Forman 2003) presents
experiments on various methods for feature reduction. A useful reference on word
selection methods for dimensionality reduction is Yang and Pedersen (1997), which
discusses a wide variety of methods for selecting words useful in categorization.
It concludes that document frequency is comparable in performance to expensive
methods such as information gain or chi-square.

2.15 Questions and Exercises

1. How would you evaluate a tokenizer?
2. List some features that would be useful for building a classifier to predict an

end-of-sentence period.
3. How would you create a dictionary such that words in the title are twice as

important as those in the main text of the document.
4. Explain how stemming can lead to more reliable feature estimates.
5. If local dictionaries are generated for each category and then combined together

into a global dictionary, would this result in a more predictive dictionary than a
global dictionary obtained by ignoring category information and pooling all the
text together?

6. Given both training and test sets of documents, an analyst pools them together
and then extracts a dictionary to use for generating vectors. What is the problem
with this and how could the analyst resolve it?



Chapter 3
Using Text for Prediction

The words prediction and forecast conjure up images of momentous decisions and
complex processes fraught with inaccuracies. From a statistical perspective, it’s a
straightforward problem that has a solution. Of course, the solution may not always
be very good. The problem presents itself as in Fig. 3.1. Given a sample of examples
of past experience, we project to new examples. If the future is similar to the past, we
may have an opportunity tomake accurate predictions.An example of such a situation
is where one tries to predict the future share price of a company based on historical
records of the company’s share price and other measures of its performance.

Making a prediction requires more than a lookup of past experience. Even if we
effectively characterize these experiences in a consistent way, the test of success is
on new examples. For prediction, a pattern must be found in past experience that
will hold in the future, leading to accurate results on new, unseen examples. If a new
example presents itself in a form that is radically different from prior experience,
learning from past experience will prove inadequate.Machine learning and statistical
methods do not learn from basic principles. They have no ability to reason and
reach new conclusions for new situations. Still, perhaps surprisingly,many prediction
problems can be solved by finding patterns in prior experience. If samples can be
obtained and organized in the right format, finding patterns is almost effortless, even
in very high-dimensional feature spaces.

The classical prediction problem for text is called text categorization. Here, a set
of categories is predefined, and the objective is to assign a category or topic to a new
document. For example, we can collect newswire articles and describe a set of topics
such as financial or sports stories. The set of topics is fixed. When news arrives, the
words are examined, and articles are assigned topics from a fixed list of possible
topics.

However, characterizing all prediction from text as text categorization is too
narrow. Prediction from text can be just as ambitious as prediction for numerical
data mining. In statistical terms, prediction has a very specific characterization, and
it need not deal with just topic assignment to documents. Prediction for text fol-
lows the classical lines of all numerical classification problems, and we can use a

© Springer-Verlag London 2015
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Fig. 3.1 Predicting
the future based on the
past

traditional model of data that applies to any sampling application where the answers
are presented as true or false.

The prediction problem for text is generally a classification problem. In our
spreadsheet model of data, we have the usual rows and columns, where a row is
an example and a column is an attribute to be measured. For classification, we have
an additional column, a label identifying the correct answer. For text, the answer is
something that is true or false. For example, the labels for a stock price prediction
problem may be a 1 for a stock price that goes up and a 0 for unchanged or down.

Figures3.2 and 3.3 are abstract templates of spreadsheets that might be composed
for prediction. Figure3.2 is the classical text categorization application, where the
goal is to filter spam e-mail from valid e-mail. Figure3.3 illustrates that document
classification might be explicitly predictive. The examples are words found in news
stories about companies, and the labels are whether the stock price rose in some time
period following the article.

So far, we have not shied away from describing text as unstructured data that can
be converted into structured data, where classical machine-learning methods can be
applied. There remain many nuances in the recipe that do not alter this worldview
but can make our trip to obtaining good results more direct. Let’s look at predictive
methods from the perspective of text and our experience in choosing the best route
for their application.

Fig. 3.2 Abstract spreadsheet for spam prediction

Fig. 3.3 Abstract spreadsheet for predicting stock price
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3.1 Recognizing that Documents Fit a Pattern

What kinds of documents are we talking about? These are generally documents in
digital form that can be accessed by computer. While they could be as large as a
book or a manual, they are more likely to be relatively brief. The prototypical digital
document is a newswire or magazine article. Larger documents, such as books, are
more structured and are composed of smaller subcomponents such as chapters.

If we pool all the words in a document collection, we often have a large dictionary
representing the complete set of words appearing in all documents. It is not unusual
for the global dictionary to have hundreds of thousands of words. Yet a local dic-
tionary, taken relative to documents only for a single topic, can be far smaller. As
seen in the previous chapter, given a document and a dictionary, we can encode the
document as a vector of numbers, in the simplest form a vector of ones and zeros,
representing the presence or absence of individual words. Most of the entries will
be zero. This concept of sparseness of words for a document or topic is consistent
with the notion of finding a pattern of words that is characteristic of a label. To
be successful in prediction, we expect to find common characteristics—patterns of
words in documents. Once again, these patterns will refer to only a small space of
the words that occur in the subset of documents with the same label.

The spreadsheet of Fig. 3.4 is an idealized view of words that form a pattern. For
prediction, we examine patterns relative to a label, where the label is the correct
answer. The label is true or false, represented by a zero or one in the last column. We
see that the same two words (Word2 and Word4) always occur for class 1 and never
occur together for class 0. A pattern is formed when a combination of words occurs
for the class of interest and not for the negative class.

For all applications of data mining, the accuracy of predictions is dependent on
the predictive quality of the attributes. For text mining, these are words or stemmed
words. Not all labels can be discriminated. Even people can have a tough time
predicting where a stock price may move in a week, whereas they may find it easier
to forecast their income for the next week. In contrast to Fig. 3.4, in Fig. 3.5, we see
no obvious predictors for class 1. No simple pattern is found that separates the two
classes. For an ideal pattern using only a single word, a 1 is found in the word’s cell
when the class is one and a 0 when the class is zero.

Fig. 3.4 Predictive patterns in a spreadsheet
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Fig. 3.5 Spreadsheet with no obvious patterns

3.2 How Many Documents Are Enough?

Predictive text mining needs samples of prior experience. From these samples, a
method learns how to make predictions on new documents. The classic application
is text categorization where newswire stories are classified by topic. Because any
story may be assigned more than one topic, the application is decomposed into many
binary problems, one for each topic. Although it is possible to assemble a collection
of many thousands of documents, the sample of documents for building predictors
must come with labels. This initial assignment of labels is likely to require human
intervention, and the effort may be a time-consuming process. We may think of text
mining as a completely automated process, but, in reality, the assignment of labels
is a bottleneck.

The collection of documents may be very large, yet the number of examples for
some topics may be very small. If it’s a rare topic, it may be so distinctive that only a
few documents will be sufficient to capture its distinctions from other topics. If the
topic is not obviously different from others, then additional documents for that topic
may be needed, an objective that is sometimes difficult to meet.

Even after assembling a representative sample covering all topics, the task of
acquiring data is not complete. A document collection may evolve over time. News
stories have a short life span. The popular stories of one year may be of no interest in
later years. The topics may be relatively stable, but the representative documents for
a topic may vary over time. Even if the sample is changing only slowly, provisions
must be made to relearn from the data.

In contrast to many other applications of data mining, text mining provides advan-
tages to the developers of predictive models. For many data-mining applications, the
developers process the data but have only a superficial understanding of the measure-
ments. They accept what they are given by the domain experts and do not have a deep
understanding of the measurements or their relationship with each other. Results are
analyzed primarily by empirical analysis. When something goes awry, we may have
difficulty in attributing this to problems with the collection process or the specifica-
tion of the features. For text mining, we are much closer to understanding the data,
and we all have some expertise. The document is text. We can read and comprehend
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it, and we analyze a result by going directly to the documents of interest. We can
also look at the words forming a pattern for prediction and make judgments about
the relevance of those words for a specific prediction class.

How many cases are enough to learn from the sample? Given the characteristics
of our sample as outlined above, we cannot directly answer that question. Instead,
we depend on correct evaluation of proposed solutions, giving us a good idea of their
future performance.We are particularly concerned in the early stages of learning from
a small sample, anticipating a need formore documents. Some learningmethodsmay
be augmented by artificial cases or human-engineered decision rules. Our main focus
is on learning and feedback from an evaluation of results without anticipating the
likely success of learning from any size sample.

3.3 Document Classification

Classification is a well-understood problem. A sample is collected. The data are
organized in a structured format. Every example is measured in the same way. The
answer is expressed in terms of true or false, a binary decision. In mathematical
terms, a solution is a function that maps examples to labels, f : w → L , where w is
a vector of attributes and L is a label. In our case, the attributes are words or tokens.
The labels can be a goal that is potentially related to the words. Most prior research
has been done on indexing, where the label is a broad topic, such as categorizing a
document as a sports story. But the label could be anything from a security threat to
the direction of stock price movements.

Figure3.6 illustrates the task in terms of spreadsheets. The first spreadsheet is
complete and all cells are filled in. The second spreadsheet has the identical format.
The columns have the same meaning in both spreadsheets, the examples are dif-
ferent. Missing from the second spreadsheet are the values of the last column. The
objective for a learning method is to learn from the first spreadsheet some model
that can predict the values of the last column for the second spreadsheet. Because
the examples or rows are not identical, the method cannot employ direct lookup of

Fig. 3.6 Learning and
applying models
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the first spreadsheet. It needs to find a generalization of the first spreadsheet that will
hold on the new examples in the second spreadsheet.

In Fig. 3.6, we learn from the first spreadsheet and apply the inferred model to a
new spreadsheet. In statistical terms, we draw a sample from a population, learn from
it, and then apply the inducedmodel to new, unlabeled examples drawn from the same
population. In classification theory, a new sample and its examples are expected to
be i.i.d., independently and identically drawn. In many situations of text mining, this
assumption cannot be expected to hold. If we sample newswires, we know that the
types of stories will change over time. The population is not stationary; it changes.
Still, we can apply classification methods, and with a proper data representation
and appropriate evaluation techniques, these learning methods can be effective. We
expect that the nature of the documents will remain relatively stable over some time
frame, sometimes for a relatively short window of time. For text categorization, the
topics and the rules for their assignment will typically not vary greatly over weeks
or even months, even though the “hot” topics in the news might change. Over longer
periods, documents in the training sample may be discarded and new ones added,
and the learning process may then be repeated.

3.4 Learning to Predict from Text

We start with a sample of documents. The initial collection of documents has been
mapped into a spreadsheet. From the spreadsheet representation, we expect to learn
some decision criteria to classify new examples. Figure3.7 describes the overall
process.

Themeasurements that we consider have their roots among thewell-known classi-
ficationmethods for learning from data. Arewe going to review themassive literature
of classification-learning methods? Not at all. The many experiments reported in the
research literature point us in the direction of the best methods for text. Moreover,
these methods have been developed to work with sparse data where the spreadsheet
cells are mostly zeros.

We are using editorial license to choose the most interesting and effective predic-
tive methods. In addition, we are choosing specific styles and formats for preparing
the data. Thus, we may run one method with a binary representation for words and
anothermethodwith tf-idf transformations.Whydowechoose a specific combination

Fig. 3.7 From text to classifiers
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of technique and representation? We and other researchers have some experience
with this issue. You may try every variation, but we have reached a stage where we
consistently apply a method in a specialized way.

The four types of methods can be differentiated by the distinctive representations
of their solutions. These are the nearest-neighbor methods, logic methods, proba-
bilistic methods, and weighted-scoring methods. We will present a learning method
from each of these categories not because we are democratic but simply because
these are the most widely used and effective methods. Our problem may be very
high-dimensional, but it is also more specialized. The methods will be adapted and
inmost cases simplified to take advantage of our expectations for text. Let us examine
these methods in more detail.

3.4.1 Similarity and Nearest-Neighbor Methods

Finding the nearest neighbors of a document is a process with which we are all
familiar. When using a search engine, we present some key words, and the search
engine returns its nearest-matching documents, This is a specific type of information
retrieval where the new document is only a few keywords. Themore general problem
is to take a new unlabeled document and predict its label. Why not just look up the
words of the new document in a stored repository of labeled documents? If the new
document consists of a few words, it is likely that some stored document will match
those words. That’s what happens with a search engine where many documents are
returned to match the key words.

Our problem is a variation on this same theme of matching a new document to old
ones. In the context of text mining, the problem is one of information retrieval; the
more general approach is called nearest-neighbor methods. A complete document
will have many words, and it is unlikely that it will completely match a stored
document. Instead of an exact match, we try to find the closest matches to the stored
documents. We might pull out, for example, the ten best matches, look at their
labels, and pick the label that occurs most frequently. This simple process, shown in
Fig. 3.8, is the basic algorithm for nearest-neighbor methods. In fact, it is one of the
most prominent approaches to prediction for text.

In our example, we decided to pull out the ten best matches. This gets generalized
to pulling out the k best matches. But how do we determine k? At one extreme, k
could be 1 and we could always take the single most similar document. In general

Fig. 3.8 Basic nearest-neighbor algorithm for documents
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Fig. 3.9 Finding similar
documents

though, looking at a group of similar documents will give a more accurate answer.
Do you usually rely solely on a search engine’s top answer? Often, the best answer
occurs in the top ten or so matches. The formal name for the method is k-nearest
neighbors, and finding k makes life somewhat more difficult. k can be estimated
by experimental procedures. These will be discussed in Sect. 3.5, where we review
evaluation of performance. In most situations, we will have many binary prediction
problems to solve. In text categorization,we havemany topics to assign. To determine
a distinct k for each topic would be a tedious task indeed. In practice, a single value
of k would be used for almost all categories, with a smaller k for those topics where
the number of positive examples is less than k.

How hard is it to find documents that are similar to a new document? Our doc-
uments have been transformed to spreadsheet data. Each document is now a vector
of numbers. Figure3.9 is a graphic of the overall process. The new document is
embodied in a vector. That vector is compared to all the other vectors, and a score
for similarity is computed.

3.4.2 Document Similarity

Most nearest-neighbor applications compare two examples bymeasuring the distance
between two examples. Equation (3.1) is a general distance measure used to compare
two examples. This is simply the difference between each attribute squared. Absolute
values could also be used. The larger the distance, the weaker the connection between
the examples.

distance(x, y) = (x1 − y1)
2 + · · · + (xm − ym)2. (3.1)

For text, a more natural measure is used, which is called similarity. When are two
documents similar? One view is that they share the same words. The most elemen-
tary measure of similarity is to count the number of words that two documents have
in common. We can then rank the document by similarity, where the most similar
documents have the most shared words. Notice that unlike traditional metrics for
computing distance, this one ignores words that occur in one document but not in
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Fig. 3.10 Computing
similarity scores for
documents

the other. We are only interested in words that occurred in both documents. Tradi-
tional nearest-neighbor methods usually do not do well with very high dimensions
of attributes, in our case thousands of words, where most of the spreadsheets are
populated with zeros. One reason for this is the inappropriate distance measure they
tend to use. By using similarity as a metric, nearest-neighbor methods become quite
practical and effective.

Using a spreadsheet, Fig. 3.10 is an example of a computation of similarity.When a
new document is presented, it is compared to every document in the stored collection.
Once in spreadsheet format, the comparison may seem time-consuming, but actually
it is fast and easy. For every positiveword in the newdocument,we count their number
of occurrences in the stored documents. Similarity, S, is the number of positive
words found in both a stored document and the new document. With thousands of
dictionary words, the number of attributes is huge, creating a very difficult task for
these methods. The use of only positive words for similarity seems to eliminate the
noise of the zeros, giving extra justification for using the sparse representation.

Is this the best similarity measure for document comparisons? Earlier, we
described several ways of representing themeasurements in the spreadsheets, includ-
ing binary, frequency, and tf-idf. All are variations on the same theme, where the
additional complexity is an attempt to weigh the quality and importance of the mea-
sure. In practice, using the tf-idf variation will usually give the best predictive results
for similarity methods. The actual computation of distance in this case is called the
cosine similarity and has been widely used for information retrieval. We will wait
until Chap.4 to amplify on cosine similarity. This is not the only measure that has
been usedwith good results formany applications. Theweighting of tf-idf with a nor-
malization constant involving document length seems to help in achieving somewhat
better results than a pure count of shared words.

Information retrieval traditionally deals with finding relevant documents in
response to a query. A search engine is the embodiment of modern information
retrieval. Yet, the same ideas can be used for another purpose. Here the specific
documents retrieved are not our prime interest, but their labels are of paramount
importance.

http://dx.doi.org/10.1007/978-1-4471-6750-1_4
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Research on information retrieval has developed efficient methods for computing
similarity. Clearly, to sequentially compare new documents to all the stored ones
is an inefficient process. Knowing that the spreadsheet is sparsely populated, being
mostly zeros, allows for the creation of additional data structures that point to the
positive entries. This can dramatically improve efficiency and will be discussed in
Chap.4.

The nearest-neighbor method requires no special effort to learn from the data and
provides no special value in finding generalized patterns in the data. It’s just a retrieval
program and under the best of circumstances will require more computation time
to apply than most other methods. The main advantage is the virtually zero training
effort: just collect the documents and store them.

We now turn our attention to other methods that are more compatible with the
concept of learning from the documents and finding explicit patterns. Their solutions
are insightful and compact.Once a solution is found and expressed as a newmodel, the
original sample has a diminished role and is possibly discarded. The most intuitively
appealing types of solutions are based on decision rules. We look at these next.

3.4.3 Decision Rules

Just as the nearest-neighbor method can be viewed as a special invocation of a search
engine, anothermethod, decision rules, can also be viewed from the sameperspective.
For the nearest-neighbor method, the search string is the new, unlabeled document,
and the most similar documents are retrieved. Only after retrieval are the labels
examined to assign the class label of the new document. Although of paramount
importance to classification, the labels are secondary to the search process.

How about reversing the search process? Look at the documents that are retrieved,
and then generate the search string that would retrieve exactly these documents.
That’s precisely what a decision rule method attempts to do. The initial sample is a
collection of labeled documents. The positive documents are examples of documents
that would be retrieved from some hypothetical search string (or strings), and the
negative examples are documents that should not be retrieved. The problem is to find
one or more patterns that would produce those positive examples. The patterns are
the same search strings that we employ when we use a search engine: a phrase of
one or more words that must occur together to match a document. These patterns are
therefore the rules for the group of positive examples.

When a new, unlabeled document is presented, we assign its label depending on
whether any of the rules are satisfied (i.e., the patterns are found in the document).
If all words in any rule are found, the document’s label is positive. Otherwise, it is
negative.

Figure3.11 is an example of a set of decision rules induced from a well-known
collection of Reuters newswires. The topic is earnings reports. Each rule is a phrase,
simply a conjunction of words. If any of these phrases are found, the earnings label
would be assigned as the topic. Otherwise, the last rule gets satisfied and it would be
labeled as not being an earnings report.

http://dx.doi.org/10.1007/978-1-4471-6750-1_4
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Fig. 3.11 Decision rules for
document classification

In many categorization applications, the categorizer is just a means to assign a
label. The primary objective is to get the label right. For decision rule categorizers,
the objective can be broadened. Because the rules are composed of words, and words
havemeaning, the rules themselves canbe insightful. They can expandour knowledge
and suggest reasons for reaching a conclusion. More than just attempting to assign
a label, such as a topic, to a new document, a set of decision rules induced from a
collection of documents may help summarize how to make decisions. For example,
the rules may suggest a pattern of words found in newswires prior to the rise of a
stock price. Of course, for this example, we would be extremely lucky (and wealthy!)
if we were to find such patterns that were also highly predictive, but it still drives
home the general advantage of rules over other categorizers: patterns of words have
more potential in expanding our base of knowledge and supporting our decisions
than rudimentary scores or measures of similarity. The downside of rules is that they
can be less predictive if the underlying concept is complex. However, even in these
situations, they can lead to insights into the nature of the key predictive words and
phrases.

Althoughdecision rules can be particularly satisfying solutions for textmining, the
procedures for finding them are more complicated than other methods. The expec-
tation is that a relatively small number of words and phrases will provide a good
solution. Yet, the search for these words and phrases that distinguish one class from
the other can be time-consuming and complex. Let’s assume that all cells in the
spreadsheet are binary-valued, with each entry indicating the presence or absence
of a word. Because our prediction problem is binary classification, we can readily
apply standard procedures to learn the rules. The primary steps are the following:

1. Find a covering rule set that completely separates the two classes.
2. Prune the rule set into a sequence of smaller rule sets.

• Optimize each rule set and repeat the pruning process until a single rule
remains.

3. Evaluate the rule sets and pick the best one as the final solution.

The covering rule set is almost always an overly optimistic solution in terms of
performance. We try to find rules that completely separate the classes. With a large
dictionary, it may be easy to find very specialized rules that take advantage of small
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Fig. 3.12 Greedy rule induction for obtaining a covering rule set

differences in the training sample of documents. These rules may not hold up in the
future, but they will allow for complete separation of the training documents. No
document in the positive class will be classified in the negative class because no
phrase found for the positive class will be found in the negative class. Figure3.12
describes a greedy algorithm for learning rules from the sample. We simply keep
adding words to a phrase until no errors are made. The algorithm is greedy because
once itmakes a decision on the nextword, it does not revise that decision. No rules are
induced for the negative class. If none of the rules apply to an unlabeled document,
its class is negative by default.

These covering rules may appear perfect on the training documents because they
separate the two classes. But a careful reading of the words and phrases may show
that some rules seem to be awkward, almost overspecified. If the learning method
cannot find short phrases to cover lots of documents, the method will substitute
longer phrases that cover fewer documents. If the method keeps adding words, it will
eventually distinguish at least one document from the others. But these rules will
often be too specific, covering few cases and overfitting the training collection of
documents. The rules will not generalize to new documents for correct predictions.
Some of the words may be very good, but less predictive specialized words are added
just to get a rule that excludes the negative class documents.

The decision rules are more than just predictors for new documents. These are
phrases that we can understand, and they should make sense to the reader. Unlike
a distance measure, the decision rules should discriminate among the positive and
negative documents and should also be clear in their rationale. If we see a phrase
that has several reasonable words and then some apparently arbitrary words, we may
question the validity of the phrase.

Because these covering rules and phrases are overspecialized, they will not nec-
essarily be the best for prediction on new examples. It may be better to use simpler
phrases with fewer words. These simplified phrases will not be as perfect as the
full covering set of phrases; they will make mistakes on the training samples. But
more compact rules may have more predictive words and could be more accurate for
predictions on new documents. These simplified phrases can be readily obtained by
pruning the covering set of rules.

How do we determine how much we should simplify a covering set of phrases or
rules? Our rules may be phrases of words, but the process is no different from that
used in numerical applications of machine learning. The phrases are decision rules,
and a large set of rules can be pruned to a smaller set of rules or phrases. Which one
will predict the best? This can be measured empirically without involving human
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Fig. 3.13 Pruning decision
rules

1. Compute err/word for each single deletion operation (word
or phrase).

2. Select the operation with the minimum err/word.
3. If more words remain, go back to step 1. Otherwise, the se-

lected set of phrases is the one where err/word is minimum
over all cumulative deletion operations.

4. Store the selected set of phrases and repeat the whole pro-
cess by pruning that set, starting at step 1.

judgment. The original covering rule set will be our most verbose set of words and
phrases. Complete words or phrases will be deleted, resulting in a more compact
set of rules, the most compact being deleting all words and always choosing the
larger class. This concept of pruning is shared by many machine-learning programs.
To prune in a controlled manner, a series of smaller and smaller sets of phrases are
found, and their predictive performance is measured. The set of phrases with the best
predictive performance is selected.

Figure3.13 is a procedure for pruning a set of phrases. Consider two types of
operations: delete awordor a complete phrase. For eachoperation, compute err/word,
the number of increased errors per deleted word. We can compute the local err/word
for each single operation and the global err/word for the cumulative set of deletion
operations, including the current one. For example, if we recursively deleted three
phrases, we can compute the increased number of errors per deleted word after all
three deletions.

This type of pruning is known as weakest-link pruning. It allows us to match
different size sets of rules and then pick one set by some standard, usually minimum
or near-minimum error. The method prunes rule sets by a complexity measure. The
measure that we use is err/word, where we prune a rule set at the point where the
number of errors introduced per number of discarded components is minimum. The
procedure is repeated on the new, smaller rule set. The result of this process is a series
of k rule sets, RS1, . . . , RSk , ordered by complexity C1, . . . , Ck . Each one of these
can be evaluated on independent test data, and an error rate can be measured (we
will discuss error estimation in Sect. 3.5). An example of this process is illustrated
in Table3.1, where we have seven rule sets. The covering rule set has nine rules

Table 3.1 Example of rule induction error summary

RSet Rules Words TrainErr TestErr TestSD AvgWords Err/Word

1 9 10 0.0000 0.1236 0.0349 9.9 0.00

2∗ 6 7 0.0337 0.1011 0.0320 7.0 1.00

3 5 5 0.0787 0.1236 0.0349 5.0 2.00

4 4 4 0.0899 0.1236 0.0349 4.0 4.00

5∗∗ 3 3 0.1011 0.1124 0.0335 3.0 1.00

6 2 2 0.1910 0.1910 0.0417 2.0 8.00

7 1 1 0.3820 0.3820 0.0515 1.0 17.00
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Fig. 3.14 Optimizing decision rules

or phrases and ten words, and its error is estimated at 0.1236. Two rule sets are of
particular interest. The first of these is the rule set taggedwith a ‘∗’. It is theminimum
error (as measured by test cases) rule set. A related rule set is the one tagged by ‘∗∗’.
This is the smallest rule set with an error within 1 standard error of the minimum
error. Why is this second rule set (which we shall refer to as the 1 SE rule set)
interesting? Ideally, we should accept the rule set with the lowest error (highest
predictive power). However, in practice, our estimates of error have an inherent
variability. So the performance difference between the minimum-error rule set and
1 SE rule set is not of much significance. Moreover, in the real world, the population
characteristics fromwhich our samples are drawn are subject to slight variations over
time. The 1 SE rule set, being generally of a lower complexity, performs better in
these circumstances. The situation is analogous to buying a pair of shoes: rather than
buying a pair of shoes that fit perfectly at the moment of purchase, one is better off
getting a pair with some slight room for future changes.

The phrases are not mutually exclusive. More than one phrase can be found in a
document. Pruning the rules by deleting a word can increase overlap, while deleting
a phrase may create a hole where some positive documents have no occurrences
in any remaining phrases. These issues require an optimization step to be invoked
following the pruning of a rule set. One form of optimization is swapping words,
also known as backfitting. For any word in our current phrases, we try to replace it
with any other word in the dictionary. If another word improves performance, we
swap them, moving the new word into the phrase and the old word back into the
dictionary. We continue the process until no word can be replaced with another word
that reduces errors. Figure3.14 describes this optimization procedure. The procedure
can be implemented very efficiently using dynamic programming techniques. The
advantage of backfitting is that it fixes problems in the rule set without changing its
size.

3.4.3.1 How to Find the Best Decision Rules

Although decision rule induction is a relatively complex procedure, the interpretabil-
ity of the result is worth the effort. A solution in the form of words and phrases is
compatible with a search engine, and the words can readily be highlighted in the doc-
uments. From a training perspective, the answer is intuitive and can be informative
and insightful. When compared with k-nearest-neighbor methods, it may seem that
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one must pay the price in terms of extra learning time for rule induction. However, to
get answers of the same predictive quality as rules, the k-nearest-neighbor methods
may need to be tuned to the right value of k—a process that is nontrivial and requires
substantial computational resources.

A data model that employs binary word values is effective and maintains the
interpretability of the answers. An alternative is to use a three-value count, 0, 1, 2,
where 2 means two or more. The ternary approach is close to binary but is somewhat
more flexible in producing compact phrases. A tf-idf representation is incompatible
with the interpretive qualities of decision rule learning.

For a binary-valued word representation, all procedures described earlier would
try either a positive or negative value. Thus, a phrase could be “word A and NOT
word B.” The phrases can be restricted to only positive words. This is less flexible
than a true binary system, but the rules are more intuitive since they only depend
on the presence of words, not their absence. For a ternary representation, > and <

operators are also used, so that an answer might be “NOT word A AND occurrences
of word B are >1.”

Selecting the best rule set leaves some room for human preference. Figure3.15
describes a procedure for selecting the preferred phrases by using the summary table
that accompanies a solution proposed by the learning system. In the absence of any
specialized knowledge, we like to always choose the most compact and reasonable
set of phrases (say, within one standard error of the minimum, as explained earlier).
There is also a possible tradeoff between the number of rules or phrases and the
overall size of the rule set (measured by the total number of words). In some circum-
stances, one may want short phrases (but can tolerate a large number of them); in
other circumstances, one may want fewer phrases (but can tolerate long ones). The
summary table contains information that allows such preferences to be taken into
account in making a selection.

The procedures that have been described for learning the predictive words and
phrases are special cases of decision rule induction. We have been able to take

Fig. 3.15 Rule set selection
procedure
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advantage of the sparseness of the data. For numerical induction, rule induction
methods usually compare all instances of a variable using greater than and less
than operations. For text, we know in advance that the values will either be binary
or ternary. Based on experience, we favor using local dictionaries of only a few
hundred words. The most frequent words are adequate, and the stopwords should be
removed. In many benchmarks for text categorization and decision rules, the results
of learning with much larger dictionaries do not improve. Some additional speedups
may be achieved in the pruning steps. Instead of considering all words in a phrase for
pruning, only the last word in a phrase may be examined. The last word in a phrase
is typically the most specialized, and the preceding words are often more predictive.

So far, we have seen the similarity measures of the nearest-neighbor methods that
require the least effort in learning or assembling a sample, and we have seen decision
rules thatmay takemore time to learn butmay still be preferred because they aremore
intuitive and often more accurate. Next, we look at the weighted-scoring methods
that have an edge in learning speed or predictive accuracy.

3.4.4 Decision Trees

Decision trees are special decision rules that are organized into a tree structure. A
decision tree divides the document space into non-overlapping regions at its leaves,
and predictions are made at each leaf. An example decision tree is given in Fig. 3.16.

In this example, each document is represented by two attributes: word A and word
B, and we want to classify each document into either category X or category Y . Each
node of the tree is a test of the form “attribute value < threshold”. For example, the
root A < 2 implies that we want to check whether word “A” appears less than twice
in a document. If so, we move to the left child; otherwise, we move to the right child.
Eventually, we reach a leaf node, where a decision is made. One can easily convert a
decision tree into a set of non-overlapping decision rules. The most straightforward

Fig. 3.16 A simple decision
tree
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way to convert a tree into an equivalent set of rules is to create a set with one rule for
each leaf by forming the logical conjunction of the tests on the unique path from the
root of the tree to the leaf. Thus, reading ∧ as “and,” a set of four rules equivalent to
the decision tree in Fig. 3.16 is

(A < 2) ∧ (B < 2) → X,

(A < 2) ∧ (B ≥ 2) ∧ (B < 4) → Y,

(A < 2) ∧ (B ≥ 2) ∧ (B ≥ 4) → X,

(A ≥ 2) → X.

Note that the exact form of each test that appears in a rule depends on whether the
“true” branch or the “false” branch was taken in going from the root to the leaf. It is
possible to simplify the converted rules using more complicated algorithms. How-
ever, decision tree itself is a convenient structure that is computationally efficient.
For example, using the tree structure, a document can be classified by following a
path from the root of the tree to a leave node, which requires no more than L tests,
where L is the depth of the tree. On the other hand, the number of leaves, thus the
corresponding number of decision rules, may be as many as 2L .

A decision tree is also easy to train. We can grow the tree greedily node-by-
node. At each node, we pick the attribute and threshold so that “attribute value <

threshold” gives the best split according to a pre-defined criterion. A general way to
view tree splitting is to regard any potential split as the creation of a new feature.
Each document reaching the node can take either value 0 or 1 in this “new feature”
based on the test result “attribute value < threshold”. We can then apply a feature
selection method (as described in Chap. 2) to pick the best split (best feature to add).

3.4.5 Scoring by Probabilities

The most obvious method of classification is direct lookup of the probabilities of
words in a document. Let C be the class label we are interested in and x be a
feature vector that denotes the presence or absence of words from a dictionary.
Mathematically, the objective is to estimate Pr(C |x), the probability of a class, given
the presence or absence of words from a dictionary. For singly labeled document
collections, we can choose the category C that has the largest probability score
Pr(C |x). For multiply labeled document collections, if our interest is to maximize
the accuracy, then C is selected whenever Pr(C |x) is greater than 0.5. Another way
to look at the multiply labeled case is that for each label we divide the document
collection into two classes: one class with label C and the other class with a label
that is not C . Therefore, we have a binary classification problem for each label value
C . This is reasonable because the multiple labels assigned to documents are usually
independent of each other, and hence it is possible to view each label assignment as

http://dx.doi.org/10.1007/978-1-4471-6750-1_2
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a separate classification problem with two classes (labeled and not labeled). It thus
suffices to consider the binary class problem.

However, we know that, even for this problem, a complete computation of proba-
bility is impossible. Even a 100word dictionary has 2100 possible combinations. Still,
a simplified approach to probability estimation, called Bayes with independence or
naive Bayes, has often been attempted. The mathematics is straightforward and the
computation is efficient, which leads to wide application of this approach, especially
in applications where a quick implementation takes priority over accuracy.

Pr(C |x) = Pr(x |C) ∗ Pr(C)/Pr(x). (3.2)

Bayes’ rule is given in (3.2), where C is the class of interest and x is a vector of
ones and zeros corresponding to the presence or absence of dictionary words for a
specific document.

Note that when applying (3.2) for two or more classes, the common factor of
1/Pr(x) does not change the relative ranking of Pr(C |x). Therefore, it does not need
to be computed explicitly for ranking purposes. If it is dropped from the comparisons,
one does not have an explicit probability estimate, only the numerator. However,
it might be useful to compute Pr(x) since it allows one to compute a probability
estimate. Using probability estimates, one can adjust the kinds of errors made and
also specify a reject probability threshold that must be exceeded to classify. When
there are two classes, C1 and C2, Pr(x) is readily computed as in (3.3).

Pr(x) = Pr(x |C1)Pr(C1) + Pr(x |C2)Pr(C2). (3.3)

The key to using these equations is to compute Pr(x |C). If we assume that the
words are independent then instead of looking up the probability of the complete
vector of x , we can look up the probability of the presence or absence of each word,
Pr(x j |C), and multiply them all together. We use x j to denote the j th component of
x . Equation (3.4) states this mathematically.

Pr(x |C) =
∏

j

Pr(x j |C), Pr(x) =
∑

C

Pr(C)
∏

j

Pr(x j |C). (3.4)

The conditional probabilities in (3.4) are readily estimated if one uses the simple
binary presence or absence of a word as a feature value that would give only two
possible values for each feature.

The probability estimates are easy to obtain from our spreadsheet. Pr(C) is deter-
mined from the frequency of ones in the last column divided by n, the number of
examples, freq(C)/n. Each x j is either a 1 or a 0 (presence or absence of the word
w j ). The quantity Pr(x j = 1|C) is computed from the frequency of ones for x j , where
only the examples labeled C are considered, freq(x j = 1, label = C)/freq(C). The
probability of w j not occurring in C, Pr(x j = 0|C), is 1 − Pr(x j = 1|C).

Figure3.17 is an example for a dictionary of four words. The training sample
consists of ten documents ofwhich four are labeled asClass= 1 and the remaining six
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Fig. 3.17 Scoring by probabilities

as Class= 0.We can easily compute estimates of the various conditional probabilities
as shown in the figure. Now suppose we get a new document D that has w2, w3, and
w4. Then, for the positive class, we could compute D’s probability as

Pr(Class = 1|D) = ((1 − 0.75) ∗ 0.25 ∗ 0.5 ∗ 0.5) ∗ 0.4/Pr(D) = 0.00625/Pr(D).

For the negative class, the probability would be computed as

Pr(Class = 0|D) = ((1 − 0.5) ∗ 0.67 ∗ 0.33 ∗ 0.5) ∗ 0.6/Pr(D) = 0.03333/Pr(D),

and as a result the document D would be labeled as Class = 0 (if one computes
Pr(D), one gets a probability of 0.84 for the classification).

The performance on text benchmark applications for naive Bayes is usually
weaker than for the other methods described in this chapter. Still, it requires almost
no memory and little computation, so it does have its advocates. It usually works
best with a relatively small dictionary representing the key words needed to make a
decision for that class.

The naive Bayes method of estimating probabilities looks complex, but in fact it
has a linear structure. This can be seen by noting that, given a binary feature vector
x , the probability score of class C is

Pr(C |x) = Pr(C)
∏

j Pr(x j = 0|C)

Pr(x)

∏
j

(
Pr(x j = 1|C)

Pr(x j = 0|C)

)x j

,

which can be rewritten as

Pr(C |x) = 1

Pr(x)
exp

⎛
⎝∑

j

w j x j + b

⎞
⎠ , (3.5)
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where

w j = ln
Pr(x j = 1|C)

Pr(x j = 0|C)
, b = ln Pr(C) +

∑
j

ln Pr(x j = 0|C). (3.6)

This formulation is often called the multivariate Bernoulli model. Another naive
Bayes model, referred to as the multinomial model, replaces the linear weights for-
mula in (3.6) with the one in (3.7). Here n is the number of examples and m is the
number of features.

w j = ln
λ + freq(x j = 1, label = C)

λm + ∑m
j ′=1 freq(x j ′ = 1, label = C)

, b = ln
freq(label = C)

n
.

(3.7)

The multinomial model is frequently used in text categorization applications. It nor-
malizes the length of a document, which often leads to slightly better performance
because it is less sensitive to the effect of document length than the multivariate
Bernoulli model. The parameter λ > 0 is a smoothing parameter, often set to 1 in
the literature. However, we find that a smaller value such as 0.01 can sometimes be
more effective.

In these forms, it is easier to see that one might also use other methods to directly
train the linear weights. We will examine linear scoring methods in the next section.

3.4.6 Linear Scoring Methods

In order to achieve good prediction performance, it is often necessary to create a
feature vector of very high dimension. Although many of the features are not useful,
it can be difficult for a human to tell what feature is useful and what feature is not.
Therefore, the prediction algorithm should have the ability to take a large set of
features and then select only useful features from the full set. A very useful method
to achieve this is by using linear scoring.

The naive Bayes method described above can be regarded as a special case of the
linear scoringmethod. This can be seen clearly from (3.5). However, the performance
can be significantly improved using more sophisticated training methods to obtain
the weight vector w = [w j ] and bias b.

Consider the problem of distinguishing between two classes. The general scoring
method is to assign a positive score to predict the positive class and a negative score to
predict the negative class. Figure3.18 illustrates an example of using a set of weights
to determine the score for a document. For all words that occur in a document, we
find their corresponding weights. These weights are then summed to determine the
document’s score.

Mathematically, this method is a linear scoring function. The general form is in
(3.8), where D is the document andw j is theweight for the j thword in the dictionary,
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Fig. 3.18 Computing the
weighted score of a
document

b is a constant, and x j is a one or zero, depending on the j th word’s presence or
absence in the document.

Score(D) =
∑

j

w j x j + b = w · x + b. (3.8)

Linear scoring methods are classical approaches to solving a prediction problem.
The weaknesses of this method are well-known. Geometrically, the method can
be described as producing a line or hyperplane. Although a line cannot fit complex
surfaces, and a curvy shape might be needed, it is often possible to create appropriate
non-linear features so that a curve in the original space lies in a hyperplane in the
enlarged space with the additional nonlinear features. In this way, nonlinearity can be
explicitly captured by constructing sophisticated nonlinear features. An advantage
of this approach is that the modeling aspect becomes conceptually very simple since
we can focus on creating useful features and let the learning algorithm determine
how to assign a weight to each feature we create. Another advantage is that the linear
scoring method can efficiently handle sparse data. This is important for text-mining
applications since although feature vectors can have high dimensionality, they are
usually very sparse.

We know from various benchmarks that the linear scoring approach does sur-
prisingly well on text classification, to the point where it rivals the best results on
benchmark data. Text lends itself to a scoring approach such as the one we described
in Fig. 3.18.

The modern approach to learning the weights is not the same as the classical
statistical methods. The simple naive Bayes methods have severe problems with
redundant attributes, which in text corresponds to words that behave like synonyms.
Classical methods were developed to handle a small number of attributes, certainly
not the tens of thousands of words in a global dictionary. The newer linear methods
are oblivious to these limitations. A major advance in linear methods for text has
been their ability to work with huge dictionaries and find weights for every word in a
complete dictionary. If there are ten synonyms, it can weigh each one. This capability
to work with so many words and weigh all of them both positively and negatively
seems to capture the subtleties of language, where some words are precise and strong
predictors and others are vague and weak predictors.
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Surely, isn’t the computational time for learning in this high-dimensional space
prohibitive? Not at all. The same problem that cannot be solved by a classical method
can now be solved incredibly quickly, much faster than by nearest-neighbors simi-
larity methods or the decision rules. Moreover, the natural extension for the linear
model is not to find more complex mathematical functions. Instead, scoring might be
extended by adding word phrases to the single-word dictionaries. Benchmarks using
more complex scoring methods generally perform no better than the linear scores.

The key problem with these weighted-scoring methods is that of learning the
weights, the second column in Fig. 3.18. The words are those in the dictionary, and
the weights for them will be learned from a collection of documents. The label
is assigned by applying (3.8). How do we learn the weights? Implementations can
consist of less than 200 lines of code. However, themethod is amathematical process,
an application of numerical analysis.

3.4.6.1 How to Find the Best Scoring Model

So how dowe learn the weights? To determine themost efficient way, the treatment is
necessarily mathematical. It may look complex, but the implementation in software
is straightforward. The representation of the words can be binary, but the tf-idf
transformation usually yields better results.

Let us first look at the mathematics behind the procedure. We consider a two-
class prediction problem to be one that determines a label y ∈ {−1, 1} from an
associated vector x of input variables. Given a continuous model p(x), we consider
the following prediction rule: predict y = 1 if p(x) ≥ 0, and predict y = −1
otherwise. The classification error (we ignore the point p(x) = 0, which is assumed
to occur rarely) is

I (p(x), y) =
{
1 if p(x)y ≤ 0
0 if p(x)y > 0.

A useful method for solving this problem is by linear predictors. These consist of
linear combinations of the input variables p(x) = w ·x +b, wherew is often referred
to as weight and b as bias. We call (w, b) the weight vector and use the term bias
for statistical bias.

Let (xi , yi ) be the i th row of the spreadsheet, where xi is the vector representation
of the i-th training data, and yi represent the label, which takes the value 1 if the
document belongs to category C and value −1 otherwise. Note that, for notation
simplicity, we have slightly changed the representation in our spreadsheet model
(using −1 instead of 0 to represent the label of negative data). A very natural way to
compute a linear classifier is by finding a weight (ŵ, b̂) that minimizes the average
classification error in the training set:
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(ŵ, b̂) = argmin
w,b

1

n

n∑
i=1

I (w · xi + b, yi ). (3.9)

Unfortunately, this formulation leads to a nonconvex optimization problem which
may have many local minima. Finding the global optimal solution, which we desire,
is generally very hard (to bemathematically precise, it isNP-hard). It is thus desirable
to replace the nonconvex classification error loss I (p, y) with a convex formulation
that is computationally more desirable.

In order to motivate a convex formulation, we shall first consider the situation
where the problem is linearly separable. In this case, wewant to find a linear separator
(w, b) such thatw·xi + b < 0when yi < 0, andw·xi + b > 0when yi > 0. That is,
we want to findw such that (w ·xi + b)yi > 0 for all i . Note that if a linear separator
w exists, then there are more than one linear separators, since a small perturbation
of w still separate the data. It is thus preferable to find an “optimal” linear separator.
An idea, popularized by Vapnik, is to find the most stable linear separator, so that
any small perturbation of xi does not change the classification rule. The stability
of a linear separator’s prediction on the i-th point (xi , yi ) can be measured by its
margin: γi = (w · xi + b)yi/‖w‖, where ‖w‖2 = w · w = ∑

j w2
j .

If the margin γi is large, then the prediction on this data point is stable. In order
to change the sign of the prediction, we have to move xi → xi + 
xi such that
(w · (xi + �xi ) + b)yi < 0. That is, −w · �xi yi/‖w‖ > γi . The larger γi is, the
larger modification �xi is needed to switch the sign.

The margin idea is illustrated in Fig. 3.19. We want to find a linear separator such
that the smallest γi is as large as possible. Mathematically, the optimization problem
for finding the linear separator with the largest margin is

min
i=1,...,n

(w · xi + b)yi/‖w‖.

Amore popular method, which is equivalent to the above formulation, is to minimize
‖w‖ under the constraint mini (w · xi + b)yi ≥ 1. That is, the optimal hyperplane is
the solution to

Fig. 3.19 Margin and linear
separating hyperplane
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[ŵ, b̂] = argmin
w,b

‖w‖2

subject to (w · xi + b)yi ≥ 1 (i = 1, . . . , n).

If the data are not linearly separable, then the idea of margin maximization cannot
be directly applied. Instead, one considers the so-called soft-margin formulation as
follows:

[ŵ, b̂] = argmin
w,b

[
‖w‖2 + C

n∑
i=1

ξi

]

subject to yi (w · xi + b) ≥ 1 − ξi , ξi ≥ 0(i = 1, . . . , n). (3.10)

The parameter ξi are variables that allows the margin constraint for each point i to be
violated (when ξi > 0). However, a linear penalty is included into the optimization
when margin constraint is violated. The larger C is, the heavier the penalty of such
violation. In particular, if C → ∞, we obtain back the original separable margin
maximization formulation.

By eliminating ξi from (3.10), and let λ = 1/(nC), we obtain the following
equivalent formulation:

[ŵ, b̂] = argmin
w,b

[
1

n

n∑
i=1

g((w · xi + b)yi ) + λ‖w‖2
]

, (3.11)

where

g(z) =
{
1 − z if z ≤ 1,
0 if z ≤ 0.

(3.12)

This method, often referred to as Support Vector Machine (SVM), can be regarded as
a modification of the classification error minimization formulation (3.9), where we
replace classification error minimization by minimizing the following upper bound:

min
w,b

1

n

n∑
i=1

g(w · xi + b, yi ).

The additional term λ‖w‖2 is called regularization, which we will discuss later on.
The loss function g(·) used in SVM is often referred to as hinge loss. The resulting

optimization problem is described as convex and thus computationally tractable.
This modification has been popular with many practitioners. However, we consider
a different method that minimizes the following loss function:
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h(p, y) =
⎧⎨
⎩

−2py, py < −1,
1
2 (py − 1)2, py ∈ [−1, 1],
0, py > 1.

This loss function has its root in the robust regression literature, and we call it robust
classification loss. Our linear weights are computed by minimizing the following
average loss on the training data:

(ŵ, b̂) = argmin
w,b

1

n

n∑
i=1

h(w · xi + b, yi ). (3.13)

Themain advantage of using (3.13), (3.14), or (3.15), is that it is possible to show that

one computes aweight (ŵ, b̂) so that the conditional in-class probability Pr(y = 1|x)

can be estimated as q̂(x) = max(0, min(1, (ŵ ·x +b̂+1)/2)). The quantity q̂(x) can
be interpreted as an estimate of the statistical confidence of the classifier’s prediction,
which is useful to know in many problems.

A problem of using (3.13) without regularization is that its solution may not be
unique. Such a formulation is often called numerically ill-posed. It is difficult to
design good numerical algorithms for solving ill-posed problems since a small per-
turbation of the formulation can cause a large instability in the solution. In general,
(3.13) may be ill-posed and numerically unstable when the dimension of x is larger
than the number of training examples n, which frequently happens in text-mining
applications. A closely related statistical problem is that using (3.13) directly to
compute a linear classifier can cause overfitting. A common remedy to the prob-
lems above is to restrict the search space of linear classifiers. This method is often
called regularization, which avoids overfitting. Regularization can be achieved in
many different ways. For example, we may consider searching over the weight space
defined as ‖w‖2 ≤ A, which introduces a constraint (or regularization) on w. Here,
we consider a slight different constraint which includes a constraint on b in addition
to w:

‖w‖2 + b2 ≤ A.

A is a parameter controlling the size of the search space. Thismethod is quite popular.
The resulting method of computing a linear weight can now be written as

(ŵ, b̂) = argmin
w,b

1

n

n∑
i=1

h(w · xi , yi ), ‖w‖2 + b2 ≤ A. (3.14)

From the computational point of view, one can introduce a Lagrangian multiplier
λ for the constraint w2 + b2 ≤ A and obtain the following equivalent formulation:
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Fig. 3.20 Plots of some loss
functions

(ŵ, b̂) = argmin
w,b

[
1

n

n∑
i=1

h(w · xi + b, yi ) + λ

2
(‖w‖2 + b2)

]
. (3.15)

This formulation resembles (3.11), and will be what we use in our computation.
Because itminimizes the averaged robust classification loss function, we call it robust
risk minimization (RRM). The advantage of (3.15) is that it transforms a constrained
optimization problem into an unconstrained optimization problem, which is typically
easier to handle numerically. In this transformation, the regularization parameter A is
replaced by λ, which in general can be tuned using test data as described in Sect. 3.5.
Other loss functions may be used as well. Figure3.20 shows the robust loss and hinge
loss functions against the classification error function.

In order to handle large data, it is necessary to use an algorithm that can take
advantage of the sparse structure in the word vector representation of documents.
Two types of algorithms can be proposed. One works by going through each word in
the dictionary and updating the corresponding weight component; the other works by
going through each data point (i.e., each positive word in a document) and updating
the weight accordingly. The second approach is closely related to a class of learning
methods called online learning that is desirable for large problems. Since such an
algorithm examines the data sequentially, it does not even need to store all the training
data in memory at the same time. This allows the algorithm to handle a large amount
of data without potential memory issues.

For large problems such as document collections, we use the online-style method
to solve (3.15). This involves a transformation of (3.15) into an equivalent dual
formulation that depends on a set of variables α = [αi ], where each variable αi (i =
1, . . . , n) is associated with a data point (xi , yi ). In particular, the solution of (3.15)
has the dual representation

ŵ =
∑
i=1n

α̂i x i yi , b̂ =
∑
i=1n

α̂i yi
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where α̂ is the solution to the following dual optimization problem:

α̂ = argmin
α

⎡
⎣ n∑

i=1

(
λn

2
α2

i − αi

)
+ 1

2

∥∥∥∥∥
n∑

i=1

αi x i yi

∥∥∥∥∥
2

+ 1

2

(
n∑

i=1

αi yi

)2
⎤
⎦

s.t. ∀i : αi yi ∈
[
0,

2

λn

]
. (3.16)

The equivalence follows from a general convex-duality formalism, which is beyond
the scope of this book. We use an alternating direction optimization method to solve
(3.16). The idea is to cycle through all data points (xi , yi ) i = 1, . . . , n, where for
each i we update the corresponding dual variable αi so as to decrease the objec-
tive value in (3.16), while keeping the remaining dual variables α j fixed ( j = i).
Each step is thus a simple one-dimensional optimization problem with respect to
αi , which can be minimized exactly in our case. However, instead of using the exact
optimization at each step, we employ a gradient descent rule, which ismore generally
applicable:

αi → αi − ηi [λnαi − yi − (w · xi + b)yi ],

where w =
n∑

i=1

αi x i yi , b =
n∑

i=1

αi yi . (3.17)

In the formula above, ηi is a small step-size quantity that is sometimes referred to
as the “learning rate” in the online learning literature. In addition, since we have
the constraint αi ∈ [0, 2/λn] in (3.16), we choose ηi to ensure that the updated αi

satisfies this constraint (which is also equivalent to a truncation of the updated αi

onto [0, 2/λn]). The quantity [λnαi − yi − (w · xi + b)yi ] is the gradient of the
dual objective function of (3.16) with respect to αi , and thus the gradient descent
update above modifies αi in the direction that decreases the objective function. In
our case, there is a closed-form solution of ηi such that the update (3.17) exactly
minimizes (3.16) as a function of αi with α j ( j = i) fixed. However, choosing a
smaller step size ηi usually helps. Moreover, good performance can be achieved by
simply picking a small fixed step size ηi , where ηi = 0.25 is a reasonable generic
choice.

We have shown the mathematics behind the procedure for learning weights to
show the crucial reformulations that enable an efficient iterative algorithm to be
derived. The complete algorithm for learning the weights is shown in Fig. 3.21. The
algorithm is scalable and can efficiently handle very large problems.

In the algorithm above, c = 1/λn. The algorithm can be terminatedwhen a certain
stopping criterion is met. For example, one criterion is the so-called duality gap,
which is frequently used in the optimization literature. However, a simpler method
of using a fixed number of iterations K generally works well. For simplicity, we
often use a fixed number K = 40. In our implementation, we also employ a random
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Fig. 3.21 Learning the
weights for the linear
categorizer

data ordering of (xi , yi ). This is to avoid the situation that data in the same category
(or similar data) are grouped together. In such a case, an online type algorithm is
likely to perform poorly since it will adjust the weight vector to overfit one category
before it sees other categories.

Notice that a smaller λ in (3.15) corresponds to a larger A in (3.14). This means
that with a smaller λ, a larger weight space is searched, and thus the statistical bias
is smaller in the sense that we can approximate the target function more accurately.
However, with a large A, statistical variance is larger in the sense that one can
also approximate a noisy function more accurately, which causes overfitting of the
training data. Conversely, a larger λ means searching a smaller weight space and is
less likely to overfit the training data; however, since the model space is smaller, we
have a larger bias. It follows that an appropriate choice of λ is necessary for optimal
performance. It has been suggested that the choice of λ = 10−3 is typically good for
many text data sets. In our implementation, we use this value as the default. However,
for some problems, other values (such as λ = 10−4) are better. In particular, this is
true for large data since it is less likely to overfit. This means that one can search
over a larger weight space to reduce the bias. This improves the performance when
the training data size becomes large.

Methods to obtain linear scoring functions presented here are designed for binary
classification problems. For multi-category problems with more than two classes, we
may train separate scoring functions for different categories (each scoring function
predicts whether the class label is one of the categories). We can then pick the class
label with the largest score as the predicted category. For example, if we want to
classify a text document x into three categories “finance”, “religion”, or “sport”, we
may train three linear scoring functions: f f in(x) indicating whether x belongs to
category “finance”, frel(x) indicating whether x belongs to category “religion”, and
fspo(x) indicating whether x belongs to category “sport”. We then pick the category
with the largest score as the winner: if f f in(x) > frel(x) and f f in(x) > fspo(x),
then we classify x into category “finance”. This method, usually referred to as the
one-versus-all or thewinner-takes-all approach, is a standard approach to solvemulti-
category problems.
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3.5 Evaluation of Performance

The learningmethods providepotential solutions.Theydonot guarantee that these are
good solutions. To get the best results, we must ensure that (a) the wisest choices are
made in applying the methods and (b) estimates are found for the future performance
of proposed solutions. Let’s look at the immediate task of evaluating a solution and
estimating its future performance.

3.5.1 Estimating Current and Future Performance

The standard statistical model assumes that a sample is randomly drawn from some
general population as described in Fig. 3.22. The new examples are unlabeled, and
their labels will be assigned. To evaluate the performance of a solution, we train
on one sample and test on another sample. Typically, our data might be randomly
divided into two parts: one for training and one for testing.

Are these new documents from the same population? Very often they are not, but
over relatively short time horizons, we assume that new documents are similar to
old documents or that events will unfold in a similar way. Documents come with
a time stamp. Almost all evaluation of text-mining solutions orders a sample by
time and uses the earlier documents for training and the later documents for testing.
This is illustrated in Fig. 3.23, where the sample is divided by time, not randomly.
This breakdown more closely simulates the prediction of future events. Unlike the
classical random sample for identically and independently distributed data, some
additional experimentation may be necessary to identify the time periods that are
best for training so that they continue to hold over some fixed future time period.

Fig. 3.22 Drawing a random
sample from a population

Fig. 3.23 Partitioning
documents into training and
test sets
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Once the data are split into training and testing samples, learning takes place
exclusively on the training set. Performance can be estimated in terms of several
measures. The standard measure for classification is the error rate of (3.18), and
its standard error is given in (3.19). The error rate is binomially distributed and
is approximately normal. Two standard errors are often used to approximate 95%
confidence bounds.

Error rate (erate) = number of errors

number of documents
, (3.18)

Standard Error (SE) =
√

erate ∗ (1 − erate)

number of documents
. (3.19)

Although error-rates and associated standard errors are useful for estimating the
performance of predictors in general, for most text applications, such as text catego-
rization, a more detailed analysis of the errors is desirable. For information retrieval
applications, there is usually a large number of negative data. A classifier can achieve
a very high accuracy (i.e., a very low error rate) by simply saying that all data are
negative. It is thus useful to measure the classification performance by ignoring cor-
rectly predicted negative data and then examining the sorts of errors made by the
classifier. Three ratios have achieved particular prominence: precision, recall, and
F-measure. Their definitions are given in (3.20).

precision = number of correct positive predictions

number of positive predictions
,

recall = number of correct positive predictions

number of positive class documents
, (3.20)

F-measure = 2

1/precision + 1/recall
.

Precision, recall, and their combination in the F-measure are all more interesting
measures of the quality of binary decisions on documents.

The following example illustrates these measures of performance. Let’s assume
that there is a database of labeled documents. Let’s focus on a particular label, such
as sports. Now consider a classifier that labels documents as sports or not, and let’s
use it to retrieve all the documents that it labels. We can assess the performance of
the classifier from the set of retrieved documents by computing the three measures
as follows:

• The percentage of all sports documents that are retrieved is the recall.
• The percentage of documents that it correctly labels as sports is the precision.
• F-measure is defined as the harmonic mean of precision and recall. It is often used
to measure the performance of a system when a single number is preferred.

Because document collections are typically large, high precision is often more
valued. For high precision, the computer’s positive decisions are usually correct, but
it may fail to catch all positives (this is measured by recall). Thus, if a program
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identifies spam e-mail with high precision and low recall, it may often leave spam in
your Inbox (low recall), but when it puts a spam document in the trash, it is usually
correct (high precision).

Is it possible to adjust the precision and recall of a classifier? Since precision and
recall measure different kinds of errors, if the overall error rate remains the same,
increasing the precision (reducing one kind of error) lowers the recall (increases the
other kind of error). This leads to a precision–recall tradeoff . Most classifiers have
a way of making this tradeoff by a simple variation of a constant. For the classifiers
discussed in this chapter, the process is as follows:

• For k nearest-neighbormethods, the threshold can be varied from a simplemajority
to some other value. For example, if five nearest neighbors being used classify a
documentwithin a topic, instead of requiring that three of the five nearest neighbors
belong to the topic, one may change this threshold to a different value. A value less
than 3 would boost recall, whereas values greater than 3 would boost precision.

• For decision rules, the cost of different kinds of errors can be altered. For example,
if false negative errors are made twice as costly as false positive errors, then recall
would be boosted.

• For probabilistic scoring, the threshold for a class can be altered from 0.5 to some
other value. Lower thresholds would boost recall, while higher values would boost
precision.

• For linear models, the threshold can be changed from zero to a different value.
Lower values would help recall, and higher values would boost precision.

3.5.2 Getting the Most from a Learning Method

Thesemeasures tell us howwell wemight project into the future. Because the sample
maychangeover time,we can expect somewhatworse results in the future. Evaluation
and estimation of future performance is an important objective. The process that is
used for documents almost always employs a distinct time-oriented train and test
sample. During training, we have another objective. We must set the parameters of
our learning program to get the best solutions. Each of the learning methods that
we have described has a single parameter related to the complexity of the solution.
This parameter can be adjusted during training. For the k-nearest-neighbor methods
that compute similarity, the value of k must be determined. For the decision rules,
the total number of words in a rule set is typically used as the complexity measure.
For the linear model, a regularization parameter controls complexity. How can these
methods find the best value during training? For this purpose, the classical approach is
effective, where the training data are randomly divided and some of the data are used
to evaluate the best value of the complexity parameter. For a very large sample, as is
typical in text mining, the risk is not great for tuning a single complexity parameter
directly on the test data. The estimate for future performance is usually the basis
for selecting the best setting of the complexity parameter. If the same test data are
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used for selection and estimation, then the estimate may be somewhat optimistic.
The safest procedure is to use two samples, one for tuning and one for estimation.

3.5.3 Errors and Pitfalls in Big Data Evaluation

In an era of big data, expectations grow for increased accuracy in predictions. After
all, so much more data is available for machine learning methods to train and test.
One might suspect that with an abundance of data, testing on independent data will
uncover fewer problems in the learned models because they are supported by larger
samples. That doesn’t follow because model complexity may grow too or some
important result may be rare and only found in a large sample.

While big data gives us the luxury of stronger testing; the need for ensuring pre-
dictive accuracy is stronger than ever. Having lots of data offers greater opportunities
for organizing testing in the best way, and many more pitfalls can be avoided than is
the case with smaller samples.

Many strong techniques have been used to deal with a shortage of data. Most
of these are based on random sampling. If we have 1000 examples, we might train
on 700 and test on 300. If we feel we need more training data, we might split the
data into 10 equal random splits, train on each of the 10 different 90% portions, and
test on each remaining 10%, a technique known as cross-validation (10-fold). These
random sampling techniques make use of the computer’s capability to fairly select
randomly and to erase its memory of past examples. Implicit in random sampling is
the assumption that the data are i.i.d, that they were independently drawn from an
identical distribution.

With substantial amounts of data, the preferred route is to replace randomsampling
with additional samples collected for testing. These should be selected as illustrated
in Fig. 3.23 where training samples are selected from an earlier time period and test
data are selected from a later non-overlapping time period. This simulates real-world
prediction, where the accuracy of predictions will be revealed at a later moment in
time. It is not of concern that the populations may be somewhat diverging. It also
helps to avoid some types of “leakage” of answers.

Leakage occurs when the correct answer is hidden somewhere in the attributes.
The most glaring situations are when examples have attributes that may implicitly
include the answer. Examples of this form of leakage include an ID field that encodes
the outcome like a bit-encoding of zero or one in a portion of its description. Another
variety involves improper flow of time of events, for example, attributes are collected
to predict an outcome, and some of these attributes are only available after the time
of prediction and outcome.

The data for several conference data mining contests were discovered by some
winning contestants to have a subcode in the ID field that indicated the target answer
and in another set of data by correlating two different datasets. This was discovered
by experts operating in a competitive environment, but routine mistakes are made
in composing attributes where an attribute is another form of the answer. The most
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common reason to be suspicious is when predictive performance looks surprisingly
good, much better than expected. One must rigorously review the data fields to rule
out any form of answer leakage.

More subtle forms of leakage can occur when examples are related. The ran-
dom sampling testing techniques would be far too optimistic with related examples.
Separating into different time periods avoids many of these mistakes. For example,
manufactured products during the same time period may have similar characteristics
like semiconductorwafers.Randomlydistributing into train and test samples give you
important clues to the answer, whichwill not be replicated in the real world. Likewise
documents published during the same time period may bear similarities which will
not be as strong when related to documents published in later time periods. Despite
having massive of data available, these problems do not disappear. Collecting data
from different time periods and splitting data for train and test is essential to avoiding
many leakage problems.

Employing different time periods for sample data is a strong tactic in proper eval-
uation and adequate error estimation. It does not assure that sample data are adequate
and will yield good predictions even when evaluations indicate strong results. The
expectation is that the future will be similar to the past. We have seen a number of
periods where unexpected events occurred. After the fact, one could attribute these
events to inadequate and unrepresentative samples. A major lesson to draw is the
critical importance of prior knowledge in assembling samples.

While it’s tempting to describe attributes and then mechanically collect data,
sometimes it is glaringly obvious that the sample has potential problems. That’s easy
to say after the fact, but most of us are less prescient. In 2008, when the housing
market in the USA had a major downturn, much of it was based on inadequate
mortgage and debt evaluation, The banks and rating agencies could point to 30-year
samples of prior results. The samples never had any years where nedian house prices
decreased. In retrospect, it’s obvious that housing prices can decrease, and without
examples of decreasing prices, a learning model may miss predictions of a potential
risk. This type of weakness could be attributed to inadequate data, a scenario that is
quite common in text mining.

It is not easy to determine whether the sample covers a adequate period. An
economics experiment at the University of Michigan is to predict the number of
weekly filings of unemployment claims by examining the frequency of phrases in
Twitter feeds. This text-based approach examines he average frequency of 10 phrases
(such as “pink slip” or “canned”) in a sample of tweets. The weekly examples are
collected in a sample, a linear regression model constructed, and then the upcoming
number of unemployment filings is predicted. The regression weights in a linear
regression are relearned and revised each week. Looking at their graph of predicted
versus actual results, we see that the actual values were originally quite high and
slowly decreased over several years. The model predictions from mid-2011 tracked
very closely to the actual values, but starting in the 2nd half of 2014, they diverged
greatly. One potential reason for the divergence is that the actual unemployment
numbers have decreased far below the prior examples in the sample.
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In another example of the importance of prior knowledge, we can observe the
experience of a vendor selling advanced data-mining tools They examined the tweets
of thought leaders in the fashion industry and surprisingly concluded that women
would soon discard high heels for lower heels. They issued a press release, and the
news found its way into the press. This conclusion seemed counterintuitive to some
skeptical researchers. The major counterpoint to that prediction is knowledge that
high-heels are a beauty item, not an optimized form of transport. A year later, the
failure of that prediction went unnoticed except by the few followers who checked
the store displays of high-fashion shoe merchants.

Machine learning methods learn predictive models from data. In most applica-
tions, even with big data, the quality of these predictions remains dependent on the
appropriateness of the assembled sample and its validation.

3.6 Applications

The prototypical predictive text-mining application has been text categorization.
Newswires are automatically assigned topics such as financial or sports stories. A
more visible application has emerged in the public consciousness: e-mail spam. In its
simplest form, filtering valid e-mail from spam is an instance of binary classification:
spam or not spam. Most e-mail programs allow a user to specify filters. It comes as
no surprise that the filters use user-defined decision rules. These are immediately
interpretable, and users are very comfortable specifying their own rules composed of
words in various heading fields or the body of themessage. Some specialized filtering
programs at the system level are partially precompiled linear scoring functions, such
as noted in our table of words and weights. They allow the administrator to adjust
the weights for phrases or other characteristics of e-mail such as the number of
spaces in the subject line. E-mail programs may also learn directly from examples,
where users mark the spam e-mail, separating all e-mail in an Inbox into spam and
not spam. Typically, a linear scoring function is then learned to replace the user in
marking incoming e-mail. Obviously, it is more dangerous to move a good message
into the trash than not to detect some spam e-mail. Precision takes priority over recall.

We will have more to say about applications of prediction in Chap. 8. Compared
with mining of structured data, predictive text mining is a new frontier. Because
text mining involves the transformation of unstructured information into structured
information, we can expect many applications that mix both numerical and text data.

3.7 Graph Models for Social Networks

The task of predictive text mining is predominantly learning from data in spreadsheet
format as shown in Fig. 3.7. Thewide-spread use of computer-based social media and
related networks like Facebook and Twitter have been accompanied by an increased

http://dx.doi.org/10.1007/978-1-4471-6750-1_8
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interest in graph models. These networks facilitate the posting of text and images,
but they also maintain a connected structure of entities that is not found in ordinary
documents. In a tiny subgraph of a Facebook-like network, such as in Fig. 3.24 (ignore
the dashed line for the moment) a node represents an individual and an edge linking
2 nodes indicates that they are friends. In this figure, A and B are friends, and B and
C are friends. Figure3.25 is a Twitter-style network and has a similar structure with
its directed edges. Here an edge represents the direction of flow of information. In
Figure Y, person A follows tweets from B and B follows C.

A social network is not a static structure. It is continually evolving, adding new
links and nodes. A key problem relative to the graph is to predict new links, new
edges, which represent friends or followers. Since the social network is generally
growing, the general problem is to see howgraph of nodes at time t evolves andmakes
new connections at future time t ′. The addition of new edge in Fig. 3.24 is illustrated
by the dashed line where A and C are now friends. This follows a strong tendency in

Fig. 3.24 Undirected social subgraph

Fig. 3.25 Directed social subgraph
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social network graphs for triadic closure, where the third edge of a triangle is formed.
Intuitively, if A is a friend of B and B is a friend of C, then the chances are increased
that A and C will become friends. Similarly, if A follows B and B follows C, then A
may soon follow C. The prevalence of triadic closure for a node can be measured by
a clustering coefficient. It is the probability that friends of node A are friends of each
other and is the percentage of friends of node A that are connected to each other.

While triadic closure is a strong tendency, it is less than precise in predicting new
edges to be formed. The actual task could be described as a standard classification
problem. A set of features could be measured and a model could be trained to predict
new edges for a given node. The training is based on the new edges at time t ′ as the
positive class versus those potential edges that were not formed. The features could
be structural graph information about nodes like the number of common friends, or
the triadic closure coefficient. Also includedmight be profile information like gender
and age. A more direct graph computation has demonstrated better results for this
prediction problem. Analogous to Google’s PageRank, which will be discussed later
on in this book, algorithms have been developed to assign transition probabilities to
the potential new edges, where the higher probabilities indicated a higher likelihood
of a connection.

The potential sources of information within a social network are more expansive
than its graphical structure. Each node has associated with it some limited profile
information. Users then post text messages, pictures and videos from their account.
Additional traffic and communication features are derived. For example, onFacebook
users “like” postings of their friends and on Twitter users are followers. Such counts
have significance in various contexts. A traditional prediction perspective, where
features are composed from all these sources and related to target endpoints, can
serve as a unifying force in building prediction models.

3.8 Summary

Once text is transformed into numerical vectors, automated prediction methods can
be applied. Predictive text mining is described in terms of an empirical analysis
that looks for word patterns, especially for document classification. Fundamental
methods of machine learning from sample data are outlined including similarity-
based methods, decision rules and trees, probabilistic methods and linear methods.
Evaluation techniques are examined to estimate future performance and to maximize
empirical results. Errors and pitfalls in big data evaluation are considered, and graph
models for social networks are introduced.
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3.9 Historical and Bibliographical Remarks

The predictive methods discussed above have been used in many other contexts. Our
interest, however, is their use in text processing and text mining.

The use of nearest-neighbor methods in document retrieval was discussed in the
first SIGIR conference (Eastman and Weiss 1978), where the document collection
was organized as a tree. Another entirely different example is described in Masand
et al. (1992), in which the collection is stored in a highly parallel processor, the
Connection Machine. In this example, the documents are news stories that are to be
assigned classification codes for the Dow Jones news service. Rule-based methods
were applied to document classification in Apté et al. (1994) using inductive learning
to find classification rules. A somewhat different rule system for classifying e-mail,
the Ripper algorithm, is described in Cohen (1996). Rule-based methods are actively
explored inMaloof (2003), which discusses learning concepts that change over time.

Linear classificationmethods have become very popular, due both to their simplic-
ity and their good classification accuracy. The naive Bayes method has been widely
used in machine learning due to its simplicity. One of the first applications of this
method to text categorization was described in McCallum and Nigam (1998), where
the authors proposed the two naive Bayes models we discussed in this chapter.

In addition to the standard naive Bayes algorithms, one can also use a simpler
linear classification method called the centroid method. The linear weight vector
for a category is simply the mean of document vectors in the category. Statistically,
it can be regarded as a naive Bayes method under the assumption that each vector
component is generated according to a Gaussian distribution. Because the Gaussian
assumption is not very suitable for text data, this method is often inferior to more
standard naive Bayes models. However, it can still be useful for special purposes.
Since the method is widely used in text clustering, we discuss it in Sect. 5.2.1.1.

Another classical linear classification method is logistic regression, which is
closely related to the maximum entropy (MaxEnt) method. We delay the description
of MaxEnt to Chap.6 since it is one of the main learning methods used in natural
language processing and information extraction.

The current popularity of linear classification is mostly due to the development
of large-margin classification, generally regarded as a very significant advance of
machine-learningmethodology. This class of methods includesmany state-of-the-art
learning algorithms such as boosting and support vector machines (SVM). Generally
speaking, a large-margin algorithm finds a classifier that minimizes a certain convex
upper bound of the classification error loss.

The idea of boosting can be used to produce a strong learner by combining
weaker learners obtained on reweighted samples of the training data (Freund and
Schapire 1997). One can also view boosting as greedily minimizing a convex loss
of the combined weak learners (Breiman 1999; Schapire and Singer 1999; Friedman
et al. 2000; Hastie et al. 2001). The method has been applied to text categorization
with great results. In particular, a version of boosted multiple decision trees was
used in Weiss et al. (1999) to produce one of the best reported text categorization
performances on the standard Reuters data.

http://dx.doi.org/10.1007/978-1-4471-6750-1_5
http://dx.doi.org/10.1007/978-1-4471-6750-1_6
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Another very popular large-margin method related to boosting is SVM, proposed
by Vapnik and based on some theoretical and algorithmic considerations (Vapnik
1998). This method has also been applied to text categorization with very good
performance (Joachims 1998). SVM is a specific case of a family of algorithms
that we refer to as regularized linear classification methods. It also includes the
robust risk minimization method (Eq. (3.15)) described in this chapter. In general,
a regularized linear classification method picks a convex loss function (the h-term
in (3.15)) to minimize and includes a regularization term (the ‖w‖2 + b2 term in
(3.15)) to stabilize the solution. Compared with SVM, the advantage of (3.15) is that
one can obtain probability information from its linear scoring output. In principle,
this is not possible with SVM. We refer readers to Zhang (2004) for a study on some
theoretical properties of different loss functions.

The duality formalism leading to the linear scoring algorithm in this chapter can
be found in Zhang (2002). The algorithm that we presented here first appeared in
Damerau et al. (2004). Although we only described one particular loss function and
one particular regularization condition, other versions of regularized linear classifiers
can also perform well for text categorization (Zhang and Oles 2001). Moreover, a
study (Li and Yang 2003) argued that a number of existing methods such as Rocchio,
naive Bayes, and k-NN, can also be studied in this framework.

An excellent discussion of leakage in samples can be found in Kaufman
et al. (2011). Beyond their exposition of the potential for leakage, they have real-
world experience in winning research conference competitions by detecting leak-
ages in sample data. The University of Michigan Prediction of Initial Claims for
Unemployment Insurance is described in Antenucci et al. (2010) and also at http://
econprediction.eecs.umich.edu which includes the historical record of the predic-
tions versus the actual values. The IBM predictions for high heels is described in
Mandalia (2011).

Although we present application case studies later in Chap. 8, we briefly mention
two applications here, focusing on their use of predictive methods. Tan et al. (2000)
discusses mining of call center records in an attempt to predict the cost of servicing a
call. They explored an inductive learner (decision trees) andnaiveBayes as classifiers.
Weiss et al. (2000b) also discusses mining call center records, in this case to reduce
a very large number of call center problem records to many fewer model cases.

A large number of developers are now working on filtering e-mail spam, and a
number of companies sell products to filter spam froman e-mail stream.A conference
on spamwas held in Cambridge in January 2003. Graham (2003) discusses the use of
Bayesian methods. Many other conferences on language processing have had papers
on filtering spam, such asKolcz andAlspector (2001), which discusses filtering using
an SVM.

An exposition of the basics principles of social networks and their graph structures
is described in Easley (2010). An introduction to the link prediction problem is
described in Liben-Nowell (2007). A presentation of a PageRank-type algorithm for
computing likelihood of edge creation, i.e., new friends, is described in Backstrom
(2011). An analysis of information flow, combining both graphical structure and
traffic patterns in Twitter-style networks, is described in Weng et al. (2013).

http://econprediction.eecs.umich.edu
http://econprediction.eecs.umich.edu
http://dx.doi.org/10.1007/978-1-4471-6750-1_8
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3.10 Questions and Exercises

1. Lets say you have a document collection that changes rapidly in a non-cumulative
fashion and you wish to use it for classifying new documents. Which kind of
classifier would be most appropriate for this task?

2. Can you think of what advantages the robust loss function has over the hinge
loss function?

3. Give definitions of Precision and Recall for measuring the performance of a
binary classifier.

4. Suppose you have a 11-NN binary classifier that has low recall score on a test
sample of cases. Explain how the classifier could be modified to improve the
recall score on this sample.

5. List some of the differences between decision trees and decision rules.
6. One of the advantages of inducing a rule-based classifier is that the rules can be

examined and modified manually to improve performance on the test set. What
is the problem with this manual approach to tuning rules?

7. Verify the probabilities in Fig. 3.17 and compute the class for a document that
has words w1 and w2.

8. What are some of the distributional assumptions underlying the naive bayes
method?

9. Why is the linear classifier such a robust performer even in situations where the
underlying categories may not be linearly seperable?

10. Would tf*idf features work better with linear classifiers than simpler binary
features? Explain.

11. Study precision-recall tradeoff in both linear and rule-based systems. Discuss
why usually precision goes down when recall goes up.

12. Discuss the relationship between dictionary size and classifier performance.



Chapter 4
Information Retrieval and Text Mining

4.1 Is Information Retrieval a Form of Text Mining?

What is the principal computer specialty for processing documents and text? Many
experts would respond “Information Retrieval.” The task of information retrieval, or
IR as its practitioners call it, is to retrieve relevant documents in response to a query.
Figure4.1 illustrates the objectives of information retrieval of documents, where (a)
a general description is given of the query, (b) the document collection is searched,
and (c) subsets of relevant documents are returned.

These seem like objectives far afield from predictive text mining. For prediction,
the objectives are to (a) examine a collection of documents, (b) learn decision cri-
teria for classification, and (c) apply these criteria to new documents. The goals of
predictive text mining are illustrated in Fig. 4.2. These goals do not appear to match
the goals of information retrieval.

The fundamental technique of information retrieval is measuring similarity. A
query is examined and transformed into a vector of values to be compared with the
measurements taken over the stored documents. In Chap.3, we described prediction
methods that use similaritymeasures formaking decisions. The prediction problem is
not solved directly by finding patterns in the collection of documents. Rather, similar
documents are retrieved. We then look at these retrieved documents and only then
measure their properties. Because we are interested in classification, we count the
number of their class labels to see which label should be assigned to a new, unlabeled
document.

We can now see that our objectives can be posed in the form of an information
retrieval model, where documents are retrieved that are relevant to a query. Our query
will be a new document. Like all documents, the query will be posed in terms of a
word vector model. The query will be matched to all the stored documents, and a
subset of documents will be retrieved. To make predictions, we add another step, as
illustrated in Fig. 4.3. We must examine the properties of the retrieved documents,
typically by simple criteria such as their labels.
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Fig. 4.1 Key steps in
information retrieval

Fig. 4.2 Key steps in
predictive text mining

Fig. 4.3 Predicting from
retrieved documents

InChap.3,we presented the nearest-neighbormethods,which are the embodiment
of similarity-based prediction. We intentionally left out the details of measuring
similarity and the potentially time-consuming search for similar documents. Because
information retrieval has been studied as a separate endeavor, it would be wise to
examine these “details” from both the IR perspective and the prediction perspective.
This will allow us to make the best choices in applying a prediction method that
measures document similarity. Although we have posed the prediction problem as a
variant of information retrieval, there are differences and similarities among the full
range of information retrieval techniques. We want to be aware of this relationship
between information retrieval and prediction.

4.2 Key Word Search

Our technical goal for prediction is to classify new, unseen documents.We havemade
the case that information retrieval and prediction are unified by the computation of
similarity of documents. Our most usual encounter with information retrieval is
through a search engine, and our queries hardly match this paradigm of comparing
documents by similarity. Yet, we should recognize that using a search engine is a
special instance of the same general concept.

To invoke a search engine, we enter key words and expect relevant documents to
be returned. These key words are words in a dictionary created from the document
collection. In computing similarity among documents, almost all predictive tech-
niques will use only the positive occurrences of words. While few, the words posed
by the user of a search engine are the positive words of interest, so similarity can
readily be computed.

The key words posed by a query to a search engine can be viewed as a small
document. Therefore, it’s just the usual document comparison,measuringhowsimilar
the new document (i.e., the query) is to the documents in the collection. Because
the document is so small, our general expectations for comparing the similarity of
documents are different from those for arbitrarily sized documents. Unless we have a
very small collection of documents or uncommon key words are posed to the search
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engine, it is likely that an exact match of documents to the key words will be found.
The notion of similarity is reduced to finding documents with the same key words as
posed to the search engine. This creates special problems for a search engine because
its ultimate objective is to rank the documents, not to assign a label. Thus, it may
need additional techniques to break the expected ties, where all retrieved documents
match the search criteria.

In the general prediction problem, the same techniques can be used to compute
similarity. There, however, the number of words contained in the new document is
expected to be much greater, and few if any exact matches will be found. Given
just words in a document, then 2100 possibilities might be hypothesized. Unless they
are duplicates of highly related documents, they are likely to differ greatly. When
comparing documents, we will not see exact matches but instead documents that are
measured as being similar by having the highest scores.

4.3 Nearest-Neighbor Methods

From the perspective of statistical prediction theory, a method that compares vectors
andmeasures similarity is a nearest-neighbormethod. The heart of a nearest-neighbor
method is its computation of distance between two examples, or in our case similarity.
Because of the unique way of computing similarity and its specialized application
to search engines, it is easy to see why the techniques are less attributed to classical
prediction methods than to modern information retrieval theory.

The generalizedmethods are essentially the same for both prediction and informa-
tion retrieval. However, their applications do diverge. For nearest-neighbor methods
and prediction, the methods will collect the k most similar documents and then look
at their labels. The actual documents are typically not of great interest and are not
displayed in reaching a conclusion. The best value of k is usually determined by
empirical experimentation. Although we may be tempted to accept the single most
similar document, k = 1, there are strong theoretical reasons why this may lead to
weaker results than using a larger number, especially when the sample is large.

For information retrieval, where classification is not the goal, the actual documents
retrieved are of critical interest. They will determine whether a satisfactory response
to the search query has been found.Moreover, we expect the best answers to be found
near the top of the list of documents, where the similarity score is the highest, and it
is more likely that an answer is relevant. Most users lose patience after reviewing the
top ten answers, such as a summary of potential answers and their links found by a
search engine. Most users will not go through tens of document links to search for an
acceptable link. They instead change the query, thereby submitting a new document
to compare to the collection.

The dimensions of the data will likely diverge. The document collection for a
search engine is often much greater than needed for a binary classification problem,
yet the number of words to be considered in computing similarity is far smaller. The
query is a small document consisting of few words, and only these words are used in
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the computation of similarity. These are the positive words. For a typical prediction
problem, the comparison is of a complete document, where thousands of words can
be positive.

Still, these methods are conceptually the same. They all compute similarity mea-
sures. Let’s look at how documents are compared.

4.4 Measuring Similarity

Many measures of similarity could be specified. We will consider three increasingly
complex measures. These are intuitively clear and are a natural progression from
simple to complex along the same theme. Although these measures are not shown
to be always best, they have demonstrated their value through many applications.
Given two documents, we will examine how similar they are. The result of these
efforts is a numerical measure of similarity. In general, we compare one document to
a collection of documents. Therefore, we have a list or vector of similarity measures,
one for each document. If we are interested in just the highest k measured documents,
then we might just keep a running list of k documents and their similar measures.
Let’s see how to compute similarity between documents.

4.4.1 Shared Word Count

Themost obvious measure of similarity between documents is a count of their shared
words. Which words are we talking about? For an information retrieval system, we
likely have a global dictionary, where all potential words will be included in the
dictionary, with the exception of stopwords. For prediction, it is generally better
to preselect the dictionary relative to the label. We typically think of computing
similarity independently of the labels and only afterwards examining the labels of the
retrieved documents. Yet, the labels can be valuable in composing a local dictionary,
such as the topic of some newswires.

Figure3.10 from Chap.3 is an illustration of the process of computing similarity
by sharedwords.We look at all thewords in the newdocument and for each document
in the collection count howmany of these words also appear. Noweightings are used,
just a simple count. If the initial dictionary has true keywords, withweakly predictive
words removed, then this count will produce reasonably predictive results. The great
value of this measure is that the results are clearly intuitive. No one will question
why a document was retrieved or how the measure was computed.

The vectors for each document can be described in terms of zeros and ones.
Mathematically, the similarity of two documents is the product of the two vectors
because only when two ones are multiplied is a word counted. In terms of imple-
mentation, one can readily match ones by AND-ed bit manipulation operations. Any
way you look at it, computing shared words is easy. The quality can be good for
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a well-composed dictionary, but performance can degrade with larger dictionaries
containing nonspecific words. We next look at a minor modification that sometimes
substantially increases predictive performance.

4.4.2 Word Count and Bonus

In high dimensions, it’s difficult for a nearest-neighbormethod to readily discriminate
between predictive and weakly predictive words. Although we may give the method
somehelp by carefully selecting the dictionarywords in advance, it is advantageous to
use more than the presence of words in the similarity measure. Instead of computing
similarity based on binary features, we might compute similarity as suggested in
(4.1) and (4.2) for computing the similarity between a new document that contains
K words and document D(i).

Similarity(D(i)) =
K∑

j=1

w( j), (4.1)

w( j) =
{
1 + 1/df( j), if word ( j) occurs in both documents,
0, otherwise.

(4.2)

We compute a measure of similarity between two documents for all dictionary
words occurring in both documents. As before, a value of 1 is added to the similarity
measure when a word is positive in both documents. A bonus is also added to the
measure. The bonus is 1/df( j), where df( j) is the number of documents in which
the word j occurs in the collection, a variant of idf, the inverse document frequency.
Thus, if the word occurs in many documents, the bonus is small. If the word occurs
in few documents, the bonus is relatively large. Instead of a 0 or 1 contribution for
each word, we now have a 0–2 contribution, where the bonus also varies between 0
and 1. Figure4.4 is an example of this similarity computation.

Fig. 4.4 Computing
similarity scores with bonus



86 4 Information Retrieval and Text Mining

We have used this simplemeasure in at least one significant predictive text-mining
application. It does significantly better than the simple shared word count. It does
help discriminate among the weak and strong predictive words, yet maintains an
intuitive feel. On that same benchmark, the widely used cosine distance did better
by a couple of percentage points. We look at cosine distance next.

4.4.3 Cosine Similarity

The classical information retrieval approach to comparing documents is cosine simi-
larity. Theword count and bonus approach is a variation of computing tf-idf. Because
the term frequency was just measured as true or false, the word count and bonus
described in the previous section are already normalized and scaled reasonably. For
cosine similarity, only positive words shared by the compared documents are consid-
ered, but frequency of word occurrence is also valued. Putting these themes together,
we have the widely applied cosine distance of (4.3). The weight of a word in a doc-
ument w( j) is computed by the tf-idf formulation, where j is the j th word in the
dictionary, tf( j), is its frequency in the document, N is the number of documents in
the (training) collection, and df( j) is the number of documents in which the word
appears. As discussed in Chap.2, tf-idf is an extension of a simple binary encoding
of word presence, and extra weighting is given to high-frequency words and words
that are relatively unique. The tf-idf measure can also be considered a measure of
importance or relevance to the document. Because documents are of variable length,
frequency information could be misleading. The tf-idf measure can be normalized
to a unit length of a document D as described by norm(D) in (4.3). The value of
norm(D) is a constant; it can be computed and stored in advance for each document.
Note that w( j) is always zero when a word does not appear in a document, so that
only shared words between two compared documents are of interest. The cosine
distance multiplies the weights of the shared words of the two compared documents,
which is similar to a logical AND operation requiring a word to be present in both
documents. The measures of individual words are summed over all words according
to (4.3), resulting in a measure of overall similarity between two documents.

w( j) = tf( j) ∗ log2(N/df( j)),

norm(D) =
√∑

w( j)2, (4.3)

cosine(d1, d2) =
∑

(wd1( j) ∗ wd2( j))/(norm(d1) ∗ norm(d2)).

The multiplications to compute similarity ensure that only positive words in both
documents will be addressed. This also leads to efficient computation with inverted
lists, which will be described in Sect. 4.7. By including frequency information and
normalizing the computation, the similarity measures may be less than fully intu-
itive and wander over a wide range, but the results have proven their worth over
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time. Cosine is the default computation for information retrieval and should serve
as a benchmark for improvement in any application. Nearest-neighbor methods for
prediction do not assume any fixed method of computing distance or similarity,
and results may be improved by trying alternatives and subjecting them to rigorous
evaluation.

4.5 Web-Based Document Search

These measures for computing similarity are quite satisfactory for classical informa-
tion retrieval. For searching theWeb, which is ourmost common encounter with their
application, they are only partially fulfilling in finding the most relevant documents.

In comparing prediction and information retrieval, we have described several
differences in the applicability of similarity measures. For prediction, we expect the
query to be a document with many words. For information retrieval, the query is
typically a few key words. Does this make a difference? For prediction, the goal is
to classify, to find the correct label. If the key words are good, even if they match
many documents, the process can be successful because we only need to count the
labels of the retrieved documents. For information retrieval, our objective is to order
and examine the retrieved documents. The Web is composed of a massive number
of documents. Unless the key words are unique, a very large number of documents
may be retrieved having all key words. Because the similarity scores are likely to
be nearly identical, there is no way to order the retrieved documents based on these
similarity measures.

Until search engines like Google arrived, it was not unusual for a search engine to
present thousands of potential answers to a query, but the ordering of these retrieved
documents was most unappealing. It would be the responsibility of a user to refocus
the query by adding more words or by substituting alternative, more specific words.
Although the document space of the Web is massive, these documents contain more
information than just words. Web documents are linked to other documents, and this
information can be exploited to rank the documents retrieved in response to a query.
An effective ranking of documents will improve predictive performance, providing
a more accurate group for the k-nearest neighbors.

Formally, a page-ranking function assigns a score to each Web page based on the
query. The larger the score, the more relevant the page is to the query. Mathemati-
cally, the page-ranking problem can be posed as a prediction problem. For example,
given a query, we may predict the degree (or the probability) of each Web page’s
relevance to the query. Therefore, given enough training data, one may in principle
use machine-learning methods to learn a page-ranking function. An important issue
in Web searching is the difference between query-independent ranking and query-
dependent ranking of Web pages. Ideally, the ranking score of a Web page is the
relevancy of the Web page to the query, and thus should be query-dependent. How-
ever, some algorithms assign a score to each Web page independently of the query.
In this case, the score can be interpreted as an indication of the page’s quality. After
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a search engine retrieves a large number of potential answers, the highest-quality
pages can then be presented first, followed by the lower-quality pages.

Information about links will help in ranking, which is needed to select the best
k documents within a larger set of retrieved documents. How then can we rank
effectively when only a few key words are in a query?

4.5.1 Link Analysis

For a simple query using any of our distancemeasures, wewill get lots of ties whether
we use the direct match of the query words or a more sophisticated cosine distance.
Unless the words are unique, all distance measures will return large numbers of
responses. One of the insights of modern search engines such as Google has been to
use additional information about citations to rank these tied responses.

To solve this problem, we hold an election, where each document in the collection
votes for its favorite documents. For the Web, the documents are Web pages. This
concept of voting is not that unusual. Scientific papers cite other papers that they
deem relevant. The importance of a collection of papers can be ranked objectively by
looking at these papers andmeasuring howoften a paper is cited by other papers,most
significantly by other highly ranked papers. Similarly, Web pages have links to other
Web pages, and a similar citation analysis can rank theWeb pages by importance. The
overall concept is simple. When a large group ofWeb pages are retrieved, ordering is
needed. Most people will examine a small number of documents before dismissing
the list as unsatisfactory. The documents that should be ranked highly are those that
are voted most relevant by other documents. These are the most likely to satisfy the
user who has posed a somewhat nonspecific query.

How are these rankings computed? Let’s look at the PageRank algorithm of the
Google search engine. The computation is surprisingly simple even over a huge
number of pages. A numerical measure or rank will be assigned to each page on
the Web, corresponding to a linked document. Let A be a page and Tj be a page
pointing to A. The page rank of page A, P R(A), is given in (4.4), where d is a
minimum value assigned to any page and C(T ) is the number of outgoing links from
page T . Thus we see that the rank of any page is dependent on the number of links
pointing to it and their ranks. It’s a recursive definition. A page will be ranked highly
when many highly ranked pages point to it. To compute the ranks, the trivial iterative
algorithm of Fig. 4.5 is employed. We proceed sequentially through an ordered list
of pages, repeatedly computing the page rank of each page using the most recent

Fig. 4.5 Computing the
PageRank

1. Use (4.4) to compute PageRank for each page in the
collection using latest PageRanks of pages.

2. Repeat step 1 until no significant change to any
PageRank.
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Fig. 4.6 Example of links
between pages

computed values of its linked pages. If all pages with no outgoing links are discarded,
the average PageRank will be 1.

P R(A) = d + (1 − d) ∗
∑

j

(P R(Tj )/C(Tj )). (4.4)

The algorithm can be illustrated using the example in Fig. 4.6, where Page A can
be seen as a home page that points to pages B and C . Page B and Page C each point
back to A. Therefore A has two links leaving and two links entering, and B and C
have one link entering and one link leaving.

Table4.1 shows the progress of the iterative PageRank computations. We arbi-
trarily assign initial values of 1 to pages A, B, and C . Using a value of d = 0.1, in
the first iteration, we compute as follows:

P R(A) = 0.1 + 0.9 ∗ (P R(B) + P R(C)) = 0.1 + 0.9 ∗ (1 + 1) = 1.9,

P R(B) = 0.1 + 0.9 ∗ (P R(A)/2) = 0.1 + 0.9 ∗ (1.9/2) = 0.95,

P R(C) = 0.1 + 0.9 ∗ (P R(A)/2) = 0.1 + 0.9 ∗ (1.9/2) = 0.95.

The process continues through 25 iterations, where the answer stabilizes at P R(A) =
1.48, P R(B) = 0.76, and P R(C) = 0.76.

The PageRank algorithm assigns a score to each web-page that can be interpreted
as the quality of the web-page. Variations of page-rank have also been employed in
web-search. For example, if we apply this algorithm at the host level instead of page
level, then we can obtain a quality score for each host which can be interpreted as
the trust-worthiness of the host. Another variation is to apply PageRank to a subset
of web-pages focusing on a certain topic, and the score of a web-page indicates the
quality of this web-page specialized to the topic. In particular, one can apply link
analysis to the collection of pages obtained from search results, which are pages
related to the search. This leads to search specific page quality scores. A different
algorithm, called Hubs and Authorities algorithm, can also be applied to search
results. In this algorithm, each page has two scores: a hub-score and an authority-
score. Authorities are web-pages that are authoritative on a special topic, and Hubs
are web-pages that link to many authoritative web-pages on a special topic. A web-
page has a high authority score if it is linked by web-pages with high hub-scores; a
web-page has a high hub-score if it links to web-pages with high authority-scores.
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Table 4.1 Iterative computations of PageRanks

Iteration PageRank (A) PageRank (B) PageRank (C)

0 1.00 1.00 1.00

1 1.90 0.95 0.95

2 1.82 0.92 0.92

3 1.75 0.89 0.89

4 1.70 0.87 0.87

5 1.66 0.85 0.85

6 1.62 0.83 0.83

7 1.59 0.82 0.82

8 1.57 0.81 0.81

9 1.55 0.80 0.80

10 1.54 0.79 0.79

11 1.53 0.79 0.79

12 1.52 0.78 0.78

13 1.51 0.78 0.78

14 1.50 0.78 0.78

15 1.50 0.77 0.77

16 1.49 0.77 0.77

17 1.49 0.77 0.77

18 1.49 0.77 0.77

19 1.48 0.77 0.77

20 1.48 0.77 0.77

21 1.48 0.77 0.77

22 1.48 0.77 0.77

23 1.48 0.77 0.77

24 1.48 0.76 0.76

25 1.48 0.76 0.76

Using this idea, we can iteratively update the authority-score and the hub-score of
every web-page: update the hub-score of each web-page as the sum of authority-
scores (of web-pages) linking to it; update the hub-score of each web-page as the
sum of authority-scores (of web-pages) it links to. This iterative procedure is rather
similar to that of PageRank.

Another popularmethod of using link structure is based on the observation that the
anchor text of a link describes its target. Anchor text is the “clickable text” associated
with a hyperlink that is highlighted in an HTML (hypertext markup language) page.
Most current search engines associate the anchor text of a link with the page it points
to. One may also include ALT text for image hyperlinks when such text is available.
As an example, in a hyperlink <A HREF=“http://www.whitehouse.gov”>White
House </A>, the anchor text is “White House.” We associate “White House” with

http://www.whitehouse.gov
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the URL “http://www.whitehouse.gov.” Since anchor text is typically created by
humans for the purpose of describing the linked target, it often gives a high-quality
summary of the page it points to. The effect of anchor text is quite similar to the
title of a document in that a very small number of terms are used to capture what
a document is about. However, an advantage of using anchor text is that there can
be multiple people generating different anchor texts for a particular page. Therefore,
relevant query words missing in the title may still appear in one of the anchor texts.

The popularity and success of search engines that use link analysis demonstrate
the importance of looking beyondword analysis for some information retrieval tasks.
Link analysis is an evolving and often proprietary technology. Based on experience,
designers of search engines include many special hooks to achieve their goals. For
competitive reasons, not all these special tweaks are revealed. Link analysis is impor-
tant, but other variations have evolved. For example, pages that are connected by links
are more likely to have the same topic than those that are not. This observation can be
used to rank or organize search results. Alternatively, documents may first be catego-
rized, and votes from the same category are given a much higher weight. The main
message is clear. If we can compile a measure of popularity or frequency of citation
of documents, we can clearly improve our performance in document retrieval.

4.6 Document Matching

We have contrasted search engines and prediction for text. One difference is the
size of the documents, and another is the goal of assigning a label or examining the
retrieved comments. These differences are not firm. A generalization of searching
is document matching. As we described for prediction, a complete document is
matched, not just a few key words. For document matching via a generalized search
engine, an arbitrarily long document is the query, but the goal is still to rank and
output an ordered list of relevant documents. The most similar documents are found
using the measures described earlier. Figure4.7 shows the generalization of a search
engine to document matching.

Why is it interesting to match complete documents? When only a few words are
presented, a document matcher behaves like a search engine, where a user can add
words, thereby specializing the search until finding a satisfactory set of responses.
But matching a long document can also be interesting. Consider an online help desk,
where a complete description of a problem is submitted. That document could be
matched to stored documents, hopefully finding descriptions of similar problems and
solutions without having the user experiment with numerous key word searches.

Fig. 4.7 Generalizing
search to document matching

http://www.whitehouse.gov
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4.7 Inverted Lists

Matching a document to a collection of documents looks like a tedious and expensive
operation. Even for a short query, comparison to all large documents in the collection
implies a relatively intensive computation task. Information retrieval techniques do
function in reasonable time and have been developed to mitigate the complexity of
sequential comparison of all documents in a collection. The query’s words are sparse
relative to the dictionary’s words. Of greatest benefit is the use of an inverted list.
Instead of documents pointing to words, a list of words pointing to documents is the
primary internal representation for processing queries and matching documents.

Figures4.8 and 4.9 illustrate the concept of focusing on words rather than docu-
ments. The natural representation for predictive modeling was described in Chap. 2.
Each document in the collection is represented as a list of its constituent words.
Nearest-neighbor methods compare a new example to stored examples. For infor-
mation retrieval, our representation is more specialized. A general distance measure
is not computed over all attributes. Instead, the measures of similarity for IR are all
based on positive co-occurrences of query and matched document words. So if a
word is absent from the query, it will have no contribution to the similarity measure.
Moreover, the only documents of interest are those where a query word appears.

It is trivial to convert from a document order to a word order. In Fig. 4.10, an
example with both orders is shown. The conversion from one order to the other is
straightforward.

When a query is presented, we process each of its words. The word list tells us
the documents where the word appears. As the word list is processed, the similarity
measure for the indicated document is increased by the requisite amount. If we were
using just a binary count, then for each word on the list, a 1 would be added to the

Fig. 4.8 Documents
pointing to words

Fig. 4.9 Words pointing to
documents
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Fig. 4.10 Document order
and word order

similarity measure of that document. In our example, if the query contained words
100 and 200, then we would proceed through the following steps, first processing
W (100) and then W (200) to compute the similarity S(i) of each document i :

S(1) = 0 + 1,

S(2) = 0 + 1,

. . .Other documents with W (100) . . .

S(2) = 1 + 1,

. . .Other documents with W (200) . . . .

The inverted list is the key to the efficiency of information retrieval systems.
Similarly, for purely predictive methods, the same efficiencies can be adopted and
implemented. We see that search engines operate quite efficiently. Other methods
such as the linear score are more efficient for predictive applications because they
have trained and found a mathematical formula to apply. The expectation of sparse-
ness, the positive-match similaritymeasures, and the inverted list have all contributed
to making nearest-neighbor methods a pragmatic possibility for prediction.

4.8 Evaluation of Performance

Information retrieval methods are specialized nearest-neighbor methods, which are
well-known prediction methods. IR methods typically process unlabeled data and
order and display the retrieved documents. For prediction of a new document, a
supplementary step augments the usual retrieval. The labels of the k most similar
documents are counted, and a class assignment is made. In the context of labeled pre-
diction, the methods described in Chap.3 for evaluation are applicable. For example,
a test set of documents can be used to measure an error rate.

For most applications, the date of appearance of documents is important. The
most appropriate testing is to look at documents appearing at an earlier date and
test on a later date. For example. if we were trying to determine whether the stock

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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market would go up or down, the documents that we examine should be from a
period prior to when the stock price is known. There may be applications where time
is less important. For these applications, information retrieval methods would have
a natural way of evaluating predictive performance. Unlike other learning methods
such as linear scoring, the IR methods have no training and induce no new rules for
classification other than determining the value of k, the number of nearest neighbors
to be used in counting the labels. For each document from the collection, or from
a random subset, the nearest neighbors could be retrieved along with their labeled
answers. The accuracy for a specific value of k could be determined.

Bothmeasuring accuracy and selecting k during the same experiments are slightly
optimistically biased even when the document collection is large. It’s the most prag-
matic approach for a real application. Finding k over many classes is a much more
tedious effort. For example, to assign topics, such as finance or sports, to newswires
might require finding a different k for each topic. Such an approach is not very prac-
tical and is questionable when the same test data are reused. Instead, the same value
of k is usually selected for most classes, perhaps with some allowances made for the
rare classes. Couldn’t we just use the label of the single most similar document? In
general, that answer will be weaker than using more than one document.

Search engines and document matchers are not focused on classification of new
documents. Their primary goal is to retrieve the most relevant documents from a
collection of stored documents. How do we measure whether that goal is achieved?
We could ask users to rate the results of a search engine and we would apply some
measure of accuracy. For example, we may ask how many of the top k (typically
top 10) pages returned are relevant. This effort is a form of assigning labels. For the
Web, the user community measures effectiveness by choosing from among the many
search engines. Newer search engines have displaced the originally dominant ones
because users have switched en masse to the search engines that gave them the best
results. The evaluation is by voting of a user community. Interestingly, the search
engines that win in the marketplace simulate this voting experience by using link
analysis as a proxy for the vote of the user community.

4.9 Summary

Information retrieval is described as a predictive text-mining task. The methods for
retrieval can be considered variations of similarity-based nearest-neighbor methods.
Both key word search and full document matching are examined. Different meth-
ods of measuring similarity are considered including cosine similarity. Classical
information retrieval has evolved from retrieval of documents stored in databases
to web-based documents. These documents have richer representations with links
among documents. Link analysis for ranking similarity of documents is reviewed.
Some performance issues for computing similarity are considered including the spec-
ification of inverted lists for indexing documents.
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4.10 Historical and Bibliographical Remarks

Many of the ideas discussed above have been part of the technical repertoire of
information retrieval specialists for many years. The SMART system (Salton 1964;
Salton andLesk 1965, 1968) incorporated the vector representation of documents and
queries and the idea of using the cosine of the angle between vectors as a correlation
coefficient. The system also had the ability to rank answers according to the value of
the correlation coefficient. Evaluation of the various ways to configure the SMART
systemwas measured by precision and recall and the 10-point precision–recall curve
(Salton and Lesk 1968). The idea of weighting query terms by a combination of term
frequency and inverse document frequency is explained in Salton and Wu (1980).

ThePageRank algorithm, discussed in Page andBrin (1998) andPage et al. (1998),
is closely related to the Hubs and Authorities algorithm (Kleinberg 1999). This
method for ranking pages for output is the essential idea in theGoogle retrieval engine
(but is not the complete story, which is proprietary). The basis for this algorithm is
another old idea in information retrieval called “citation analysis,” pursued for many
years by Garfield (1972).

Research in Web-based information retrieval has been supported by the TREC
(Text Retrieval Conference) program. The detailed descriptions of the program, with
proceedings of the previous years, can be found at http://trec.nist.gov. There are two
main Web-retrieval-related evaluations, one for home-page finding and the other for
topic distillation. The goal of home-page finding is to return the main page of a site.
For this task, link analysis is quite useful. The goal of topic distillation is to find
relevant pages for more specific query topics. In this task, a query is addressed by
the content of relevant pages. Therefore, traditional IR-based retrieval methods work
quite well, and link analysis seems less useful.

In addition to the simple document-matchingmethodwe described in this chapter,
more sophisticated methods have also been proposed. They can be regarded as rank-
ing functions that determine the relevance of a document to a query. For example,
one such formula, called BM25 (Robertson et al. 1994), has been quite successful in
some TREC evaluations. However, a disadvantage of such methods is that they often
contain a number of parameters that need to be tuned. In principle, one may also use
machine-learning methods to learn unknown parameters of a ranking function or to
combine the outputs of different ranking functions. Given a query, we need to predict
whether a document is relevant to a query or not. The ranking score of a document
can then be interpreted as the degree or probability of its relevance to the query.

4.11 Questions and Exercises

1. Verify the results of Table4.1. You can write a small program based on Fig. 4.5
or use an EXCEL spreadsheet to do this.

2. What are the key determining factors for the quality of matched results?

http://trec.nist.gov
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3. Why does the cosine distance need to be normalized for document length?
4. Discuss how the page-rank (4.4) is related to the behaviour of an Internet surfer.
5. What do you suppose is the most common anchor text? Find at least one other

instance of misleading anchor text on the web.
6. Assume that a human assessor is available to evaluate results of a matcher. Com-

pare and contrast two different methods for validating a matcher.



Chapter 5
Finding Structure in a Document
Collection

Predictionmethods look at stored examples with correct answers and project answers
for new examples. One would expect that if we cannot obtain answers for the training
examples, then the process cannot be completed. Given a collection of documents,
we have no problem transforming the unstructured set of words for each document
into a structured spreadsheet. But the last column alsomust be filled in. In Fig. 5.1, we
see a spreadsheet, a list of labels, and the spreadsheet column containing the labeled
answers. Someone must compose a list of potential labels. Given the list, someone
assigns labels to the documents. Sometimes label assignment can be automated, such
as the label that a company’s stock price has risen. In most instances, such as topic
assignment to newswire articles, the assignment of labels is done by humans, and this
can be a tedious and expensive task. Is there any way to assign labels automatically
to a document collection? We will discuss this task. Not only will the labels be
assigned, but the list of labelswill also be determined automatically.Because suchkey
information is missing from the problem description, our expectations for accurate
predictive performance should be reduced from standard prediction applicationswith
labeled data.

Our objectives are to determine labels and assign them to documents. If we were
very confident of meeting these goals by some automatic process, we would com-
pletely bypass the expense of having humans assign labels, but the process known
as document clustering is less than perfect. The labels and their assignment may not
be the same as those composed by humans or those collected from some objective
process that uses external information such as stock price change. Document clus-
tering assigns each of the documents in a collection to one or more smaller groups
called clusters. Based on an examination of their words, these clusters should contain
similar documents. The initial collection is a single cluster. After processing, the doc-
uments are distributed among a number of clusters, where ideally each document is
very similar to the other documents in its cluster and much less similar to documents
in other clusters. Figure5.2 illustrates the overall task of taking a complete collection
and assigning its documents to smaller clusters.
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Fig. 5.1 Spreadsheet with
labels

Fig. 5.2 Clustering a
document collection

It is quite reasonable to expect that documents having the same label will be
similar. If a human composed the labels, these goals were likely known prior to
assembling the structured data. The labels have an important meaning, often iden-
tifying the goals of the project. Given a list of labels, the examples represented in
the sample were then assembled and the labels assigned. Prior to document cluster-
ing, the labels are unknown. Instead, a measure of similarity is used to group the
documents. Only after clustering are the groups examined to give meaning to each
cluster. The clustered documents do form groups, but their meaning is implicit in
the grouping. The process did not start with a good understanding of specific goals.
So only after it is completed and the clusters have been reviewed can we say that
something useful has been achieved.

For an application, there are many ways to organize data into groups. Consider
the following experiment: Take a collection of labeled documents, and then cluster
them while ignoring the labels. Will the document clusters number the same as the
originally labeled classes? Will each cluster be pure so that all of its documents
have the single original label? In general, the results will not match exactly. In many
applications, there will be some clusters that are very close to the original classes but
others that are far away. This doesn’t mean that the clustering process is unsuccessful.
Its objective is to group the documents by similarity. Its notion of similarity may not
be the same as, and may not meet the objectives of, the composer of the original
labels.
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If document clustering is so murky, why would anyone attempt it? Clustering
gives additional structure to the sample data, and that can be useful. In the best case,
the clusters relate to a goal that is similar to one that would be attempted with the
extra effort of manual label assignment. In that case, the label is an answer to a
useful question. If we are at a stage where the question has to be formulated, then the
process of document clustering can be informative. For example, suppose a company
is operating a call center where users of their products submit problems, hoping to
get a resolution of their difficulties. The queries are problem statements submitted
as text. Surely the company would like to know about the types of problems that are
being submitted. Clustering can help us understand the types of problems submitted.
Printer problems might cluster in one group and network problems in another. For a
fixed number of clusters, such as 100 different clusters, someone could review each
of the clusters to find the most frequent types of problems received by the call center.
These might be characterized by identifying key words found for a cluster.

5.1 Clustering Documents by Similarity

If our goal is prediction, then similarity measures, as embodied in information
retrieval and nearest-neighbor methods, are usually not the first choice. They are
unable to simplify a solution by directly learning from labeled examples. Yet, when
we discuss document clustering, similarity measures assume a prominent role. Here
the data are unlabeled and similarity of documents is the defining characteristic for
assigning labels. So, to cluster documents, it is natural to reexamine the information
retrieval techniques and their integral similarity measures.

To cluster documents, it will be necessary to compare documents and group
together those that are similar. As shown in Fig. 5.3 and as is typical of informa-
tion retrieval, two documents are compared and a measure of similarity is computed.
For document clustering, the scenario in Fig. 5.4 is more common. A composite
document is compared with another composite document. The composite document
represents many documents either in summary form or by their individual member
documents. How do we represent a composite document? Some clustering methods,

Fig. 5.3 Computing
similarity of two documents
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Fig. 5.4 Computing
similarity for clustering

such as hierarchical clustering, maintain links among the composite document, the
cluster, and all their member documents. Other methods, such as k-means clustering,
summarize the composite cluster by classical statistics using averages of individual
measurements.

Each of these approaches has advantages and weaknesses. Relative to prediction,
we are operating in a fog, so that predictive accuracy is not necessarily the decid-
ing factor in choosing an approach. There is much research literature on clustering
documents. For our purposes, a few prominent methods are sufficient to highlight
contrasting approaches to comparing single or composite documents.

5.2 Similarity of Composite Documents

Information retrieval methods can dynamically obtain the documents most similar
to any other document. So, for many applications, why bother to predefine groups of
documents? These relationships may be found dynamically by matching a document
with others and measuring their similarity. For example, some attempts have been
made to add a clustering component to responses of a search engine. The idea is to
group the answers, the linked documents, into different categories so that the user
can get an overview of all answers instead of processing sequentially through the first
10 or 20 documents. In general, though, the supplementary clustering information
has had limited success because the ordered response of a search engine may trump
a clustered view of all documents, including the weaker ones.

We have mentioned some applications where it is beneficial to organize the doc-
uments by groups. This is especially true when one knows little about the structure
of the documents and one wants an overview of their contents. In terms of prediction
applications, document clustering provides a direct solution to a data acquisition
problem. We have no labels. Our spreadsheet is missing a column, and this is a
rational way of filling in the last column. Although these entries in the column may
be answers in search of a problem, they provide a means for further analysis and
prediction.
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The similarity measures that will be considered are the same ones discussed in
Chap.4. The most widely used is cosine similarity, shown in (4.3) from Chap.4,
where the normalized tf-idf vectors of two documents are compared. Instead of
comparing two documents, clustering compares pairs of either single or composite
documents. How can we compute similarity? Several obvious ways have been used
to represent comparisons among composite documents.

The simplest way to summarize a cluster is to create a composite document by
averaging the documents in the cluster. Each document is represented by a vector
of measurements. These might be the normalized tf-idf measurements. For each
measurement in the vector, the mean can be taken. The result is a single summarizing
vector for a cluster. Thus we have a composite document represented in the usual
vector format. Comparing another document with the mean vector of the composite
document is the sameprocess as comparing twodocuments. In text analysis, one often
uses a normalized document vector representation. Similarly, one can normalize the
mean vector of the composite document. For cosine similarity, the two vectors are
multiplied, assuming they are normalized.

The cluster was summarized by averaging the vectors of all documents in the
cluster. This results in a new vector. It can be compared with any single document or
with other clusters that also have mean vectors. Alternatives can be considered for
the summarizing vector. Each of the constituent documents that are members of the
cluster can be examined, and they could be candidates for a summarizing vector to
characterize the cluster. Given a document not in the cluster, our objective is to find
its similarity to the documents in the cluster. We can compare the new document to
each of the documents in the cluster and note their similarity. We can also compare
two clusters by comparing all pairs of documents, one from each cluster. Then we
measure similarity by the similarity of the best pairs. Which are the best pairs? Two
measures have been used:

• single link: the two most similar documents,
• complete link: the two least similar documents.

We need not make any distinction between single documents and composite doc-
uments. A single document could be considered a cluster of one document. For a
single link, when we compare all clusters, the global best pair is the two most similar
documents from any two different clusters. For a complete link, similarity is mea-
sured in two steps. First, we select a pair of clusters to compare. For each pair of
clusters, the measure of similarity is the two least similar documents, one from each
cluster. The result of the first step is a single similarity measure for each pairwise
comparison of clusters. In the next step, we find the single best pair, which is the one
with the greatest similarity. The two most similar clusters are the two clusters with
the greatest minimum pairwise similarity.

Measures of similarity for composite documents are illustrated in Fig. 5.5, where
the first composite vector has three vectors and the other has one. In this example,
similarity of two vectors is computed by their inner product, i.e., multiplying the
non-normalized components of each vector and summing over all components. The
mean vector is a one-time computation for the cluster, and the resultant new vector

http://dx.doi.org/10.1007/978-1-4471-6750-1_4
http://dx.doi.org/10.1007/978-1-4471-6750-1_4


102 5 Finding Structure in a Document Collection

Fig. 5.5 Example of
similarity computation for
composite documents

is immediately available for direct comparison with other vectors. Using this aver-
aged vector is considered a faster comparison than comparing individual pairs from
different clusters.

We will look at one method, k-means, that requires using the mean. For hierarchi-
cal clustering, any of the three measures can be used. Knowledge of the application
and efficiency will strongly influence the choice of clustering method.

5.2.1 k-Means Clustering

k-means is a classical clustering method that has been adapted to documents. It is
very widely used for document clustering and is relatively efficient. The concept is
illustrated in Fig. 5.6, where the documents start in one pile and are then distributed
into smaller piles of similar documents. For purposes of prediction, each pile of
documents can be considered a unique label.

How do the documents end up in the right cluster? The name k-means implies that
k clusters will be used, and the means of these clusters will play an important role.
Figure5.7 describes the algorithm. Documents are moved among a fixed number of

Fig. 5.6 Assigning
documents to clusters

Fig. 5.7 The k-means
clustering algorithm
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Fig. 5.8 Example of
k-means clustering (for
k = 2)

bins until no improvement can be found. How are the documents initially distrib-
uted among the bins? The classical approach of k-means is to randomly assign the
documents to the bin. Because the algorithm halts at a local minimum, several runs
with random assignment may be necessary to get the best answer. An alternative
approach that we have used is to compute the global mean vector of all documents,
compute the similarity of each document to this vector, sort the similarity measures
and corresponding documents, and assign equal numbers of documents in sorted
order to the bins. The k-means algorithm is then applied, but only moves between
the adjacent bins are considered for moving a document.

Note that if the original documents are represented as normalized vectors, then,
in step 2, the mean vector can also be normalized. Figure5.8 is an example of the
application of k-means for two clusters, five documents, and hypothetical vectors
containing only a single word measured by frequency.

k-means will typically converge to its minimum after relatively few iterations.
When the number of bins is much smaller than the number of documents, which is
the expected case, the algorithm can be considered efficient. As the number of bins
grows large, efficiency diminishes. At the limit each bin is a single document and
every document is compared with every other document during each iteration.

The main conundrum for k-means clustering is to determine k, the number of
clusters. The method has no knowledge of the right k, so it is our burden to specify k.
How do we do this? Very often, for an application, we have a good idea on a relative
basis for choosing k. We may know that five or ten bins are all that are reasonable.
If we expect great diversity, such as for our call center example, we might choose a
larger number like 100. If we know something about the nature of the documents,
we may also know something about a reasonable number of labels or categories. In
general, the number of bins should be far smaller than the number of documents.
Otherwise, prediction and generalization to new documents will be weakened.

Is determining k strictly guesswork? For k-means, we can use some of the empir-
ical techniques that were described in Chap.3. The k in k-means is similar in concept
to the k in k-nearest neighbor. It is a complexity measure that we can estimate from

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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the sample. For the k-nearest neighbor method, we choose k based on the value
that minimizes test error. For clustering, an alternative measurement, an objective
function, is employed to measure overall performance. For k-means, an objective
function analogous to error rates can be described. Let xi be the i th document vec-
tor, and ci ∈ {1, . . . , k} be its corresponding cluster index, a typical measure is the
total variance from the cluster means as described in (5.1) for k clusters.

E(k) =
n∑

i=1

(xi − mci )
2

n
. (5.1)

For each document vector xi and its cluster mean mci , compute the squared error
averages over all n documents, E(k). Then we vary k, perhaps by starting with
two clusters, then four, and continuing to rerun k-means and doubling the number
of clusters, stopping when k is too large. We then compare the objective function
values for varying k. We choose k based on the point where increasing k does not
yield a commensurate decrease in variance.

After the algorithm is completed, a set of labels can be assigned to the original
spreadsheet. At that point, we have a standard classification and prediction problem.
That implies that any learning method for classification could be applied. We should
not forget the pedigree of this method. Because the labels were assembled by looking
at the mean vectors of cluster documents, the natural prediction method is to use the
same technique to classify and predict new documents. If we store a mean vector
for each cluster and its assigned label, then, for any new document, we compare its
vector to the mean vector corresponding to each label. The one that is most similar
is assigned the new label.

We know that the clustering algorithm was applied to maximize similarity to the
mean. That suggests using the same classifier for new data. In general, using just
the means of a set of measurements for prediction is a very weak method for most
prediction problems. A small number of classes with a high variance would suggest
that using means is highly simplistic. A large number of classes with few examples
in each class might suggest poor generality for assigning new documents. These
issues increase the importance of specifying the right number of classes. Do these
weaknesses imply that k-means is inadequate? Not at all. We start with no labels.
We have the freedom to choose our path unconstrained by a set of correct answers.
Why not choose a straightforward and efficient approach from among the multitude
of clustering methods developed by researchers in the absence of strict guidelines
on correctness?

The k-means clustering may well be the world’s most widely applied method for
statistical clustering. It is readily adapted to documents and the vector representation,
but it is also widely used in other fields.
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5.2.1.1 Centroid Classifier

The mean of document vectors in a category is often referred to as the centroid of
the category. It can be used for the purpose of prediction. Assume that we have k
categories indexed by c = 1, . . . , k, eachwith a centroidmc.When a future document
x comes in, their inner product x · mc can be computed, and we pick the category
associated with the largest inner product as the label of the document.

Figure5.9 shows an example with four training documents partitioned into two
classes, C1 and C2. The new document in this example is classified as C2 by this
method.

The classification procedure described above is called the centroid method. If the
documents and the centroid vector are normalized, then the inner product corresponds
to the cosinemeasure. The centroidmethod has an intuitivemeaning in this case since
the closer the two documents are, the larger their inner product will be. The value of
their inner product is a quantity in [0, 1], which can be used tomeasure the confidence
of the classification result.

Although, generally speaking, the prediction accuracy of the centroid method is
lower than for other predictionmethods described inChap.3, it has certain advantages
that can be important in practice. First, computation of the centroid is very simple
and efficient. One only needs to store the centroid vector. The method can be easily
adapted to the online setting since we only need to store the total sum and the number
of vectors in order to compute the centroid. Secondly, the cosine measure has a very
intuitive meaning, which can be used as an indicative measure to determine the
confidence of the classification result.

In addition, the construction of the centroid of a category only requires positive
data in the category and does not depend on negative data outside of the category.
This is a very desirable property that can be important in some practical applications.
For example, a dynamical environment often requires the users to constantly update
the category structure and either include or remove different types of documents.
The whole document collection changes frequently, although the definition of any
particular topic may remain the same over time. Since in this case the distribution of
the negative data changes constantly, a classification method that relies only on the
positive data becomes very desirable. Next we turn our attention to another method
that is particularly attuned to information retrieval.

Fig. 5.9 An example of
centroid classification

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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5.2.2 Hierarchical Clustering

Hierarchical (agglomerative) clustering is a popular alternative to k-means clustering
of documents. As expected, the method produces clusters, but they are organized
in a hierarchy much like a table of contents for a book. Similarity is decided by
averages and also by maximum and minimum distances between documents within
a cluster, measures that some feel are more consistent with information retrieval and
its similarity measures.

The major weaknesses of hierarchical clustering are timing and computational
complexity. The method is intended for clustering a relatively small number of doc-
uments. For k-means, we expect the number of clusters to be far smaller than the
number of documents. Each comparison is with the cluster mean, so the computa-
tions and comparisons grow approximately linearly with the number of documents.
For hierarchical clustering algorithms that compare pairs of documents and not aver-
ages, the similarity between all pairs of documents is computed prior to clustering, so
the complexity is of the order of the number of documents squared. The algorithms
that involve using the least similar document in a cluster as the best are even more
computation intensive. Thus we need to be judicious in applying these methods.

Figure5.10 is an algorithm for hierarchical agglomerative clustering (HAC). The
result will be a binary tree with links of parent clusters to their partitioned clusters.
The root node contains all documents, and these are recursively partitioned into
smaller clusters. Unlike decision tree induction for prediction, the HAC trees are
built from the bottom up. Pairs of clusters are recursively combined until only one
cluster remains. The terminal nodes of the tree are the actual clusters. A tree may be
pruned to find a smaller tree that is more desirable than the fully grown tree.

Figure5.11 is an example of hierarchical clustering. The same data used in Fig. 5.8
to illustrate the k-means algorithm are used here as well. If we specify a fixed number
of clusters, in this example two clusters, thenwe see that k-means performs somewhat
better. To get two clusters, we prune the decision tree to just the root node and its two
children. Comparing the variance, the average squared error from the cluster mean
shows a higher variance for hierarchical clustering. If a hierarchy or taxonomy is not
needed for the application, and an average value is sufficient to characterize a cluster,
then k-means has the advantage. Using either single or complete link analysis may
be a better fit to information retrieval, where the k-nearest neighbors are of interest.
Using the single-link criterion (i.e., most similar document) can lead to chaining

Fig. 5.10 The hierarchical
clustering algorithm



5.2 Similarity of Composite Documents 107

Fig. 5.11 Example of hierarchical clustering

documents that are distant to other members. The complete-link analysis (i.e. least
similar document) is consideredmore desirable, but has an extravagant computational
time.

The binary tree produced by the hierarchical clustering method is a map of many
potential groupings of clusters.We can process thismap to get an appropriate number
of clusters, something that is more difficult with k-means, where we usually rerun
the procedure when we specify a new value of k. If we have a specific number of
clusters in mind, then the tree can be pruned at the right depth to ensure that number
of clusters. We followed that route in our example. The leaf nodes of the pruned tree
represent the accepted clusters.
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Chopping a tree to produce equal-length branches is one way to get a result corre-
sponding to a fixed number of clusters. It also produces a balanced table of contents.
It is often unnatural for an application when the tree produces a lengthy chain of
entries. From a prediction perspective, one is tempted to prune differently. Prune the
branches that result in the least change to some overall measure of performance. In
the case of using a mean vector as a summary of the cluster, a comparison could be
made between the variances for the children and the parent. Then the nodes having
the least difference could be pruned recursively and a judgment could be made to
trade off complexity of the tree against a potential increase in variance. We examined
such an analysis in Chap.3 relative to rule induction. For clustering, we do not have
absolute truth, so one can rely more on intuition and knowledge. Our tendency is to
select a pruned tree that still has much less variance than the single root node that
pools all documents, yet is far less complex than a fully grown tree.

5.2.3 The EM Algorithm

Clustering can also be viewed from a statistical point of view. We still consider k-
clusters. If we represent each document as a vector xi and let yi be the corresponding
cluster label that takes possible values {1, . . . , k}, there are two different scenarios:
• Hard clustering: we allow each yi to take only one value from {1, . . . , k} with
probability one.

• Soft clustering: each yi takes the value c ∈ {1, . . . , k} with probability qi,c(
∑k

c=1
qi,c = 1).

The popular k-means algorithm can be regarded as a hard-clustering method,
where each document is uniquely assigned to a single cluster. Soft clustering assigns
a probability that a document belongs to a specific cluster. From the description above,
soft clustering appears to bemore general since it includes hard clustering as a special
case. However, in practice, people almost always use a specific method to assign
the probability qi,c based on statistical models and the expectation maximization
(EM) algorithm. This method has a very natural statistical interpretation and can be
combined with sophisticated statistical modeling techniques. Due to this advantage,
it has been very widely used. We shall present this algorithm in its general form and
then discuss its relationship to the k-means method.

Statistically, given a set of k clusters, one can assume that data are generated
in two stages. First we pick a cluster c from {1, . . . , k} with a fixed probability
μc(

∑k
c=1 μc = 1); then we generate data points x according to a probability dis-

tribution pc(x |θc). The model parameters θc for each cluster c should be estimated
from the data. They characterize the unknown information that we want to determine
from the data with our clustering algorithm.

Mathematically, the data generation mechanism above corresponds to a statistical
model called mixture model, where the likelihood of a data point x is

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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p(x) =
k∑

c=1

μc pc(x |θc). (5.2)

Each cluster c is a mixture component. Given a data point x , its label y can be
interpreted as the cluster that generates x . The probability of x being generated from
the cluster � ∈ {1, . . . , k} is given by

p(y = �|x) = μ� p�(x |θy)∑k
c=1 μc pc(x |θc)

. (5.3)

Here y represents the hidden label of x , representing the actual cluster that x belongs
to. This is a natural formula to use for assigning cluster labels in a statistical soft
clustering algorithm and is used in the EM method.

The mathematical derivation of EM is based on an important property of (5.3),
whichwewill consider next. For each data point x , wemay introduce hidden variables
qy for each label y = 1, . . . , k such that [qy] is a probability measure: qy ≥ 0 and∑k

c=1 qc = 1. The meaning of each variable qc is the conditional probability that
x belongs to cluster c (that is qc represents p(y = c|x)). A well-known fact from
information theory states that the mutual entropy between [qc] and [p(y|x)], defined
as

∑k
c=1 qc ln(qc/p(y = c|x)), is always nonnegative. It is easy to see that the

equality with zero can be achieved at qc = p(y = c|x). Using the expression of
p(y = c|x) in (5.3), we can rewrite this inequality as

ln
k∑

c=1

μc pc(x |θc) ≥
k∑

c=1

qc ln
μc pc(x |θc)

qc
,

where the equality holds with qc = p(y = c|x). This property, which we restate
below in (5.4), is a crucial step in the derivation of the EM method.

ln
k∑

c=1

μc pc(x |θc) = max
q1,...,qk

k∑
c=1

qc ln
μc pc(x |θc)

qc
, qc ≥ 0,

k∑
c=1

qc = 1, (5.4)

where the maximum on the right-hand side is achieved at qc = p(y = c|x) with
p(y|x) given by (5.3).

Given a mixture model as in (5.2), the most widely used statistical estimation
technique for finding the parameters θc(c = 1, . . . , k) from a set of data xi is
the so-called maximum-likelihood estimation method, which picks a parameter to
maximize the observed likelihood of the data

∏n
i=1 p(xi ). The formula to compute

parameters in naive-Bayes, such as (3.7), can also be derived from the maximum-
likelihood method. For clustering, we find θc by solving the following optimization
problem:

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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Fig. 5.12 The EM algorithm

max
θ1,...,θk

n∑
i=1

ln
k∑

c=1

μc pc(xi |θc). (5.5)

The parametersμc are assumed to be given and often just take a uniform distribution
μc = 1/k. The EM method is essentially a numerical technique to find a local
optimum of (5.5). It is based on the following reformulation of (5.5) using (5.4):

max
θ1,...,θk

n∑
i=1

max
qi,1,...,qi,k

k∑
c=1

qi,c ln
μc pc(xi |θc)

qi,c
, qi,c ≥ 0,

k∑
c=1

qi,c = 1. (5.6)

Here, the meaning of qi,c is the conditional probability that the true cluster label yi

of xi is c. The EM algorithm is an alternating optimization method applied to (5.6).
In the E step, we fix θc and solve for qi,c. Since each subproblem has the same form
of (5.4), the solution is given by (5.3). In the M step, we fix qi,c and solve for θc for
each c. The method is summarized in Fig. 5.12.

Intuitively, the EM procedure may be explained in the following way. Although
we do not know the true cluster label yi for xi , we can estimate the conditional
probability of yi = � for each cluster � = 1, . . . , k using (5.3). This is the E-step.
With this estimate, we can divide each data point xi into k parts, each for a cluster
�, weighted by p(yi = �|xi ), the conditional probability of xi belonging to cluster
�. Using this division, we can then estimate the cluster parameter θ� independently
for each cluster � (using the maximum likelihood method), using only the �th part
of each training point xi (i.e., weight each xi by p(yi = �|xi )). This is the M-step.

Although in theory the EM method may converge slowly, practitioners often find
that 20 iterations gives satisfactory results. It is also necessary to start EM with
different initial parameters that are often generated randomly. This is to improve
local optimal solutions found by the algorithm with each specific initial parameter
configuration.

The EM algorithm for maximizing (5.6) is based on statistical modeling and
maximum-likelihood estimates. By modifying (5.6), we can also obtain different
clustering procedures (which do not necessarily have maximum-likelihood estimate
interpretations). For example, hard-thresholding methods such as k-means can be
obtained by changing (5.6) to
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max
θ1,...,θk

n∑
i=1

max
qi,1,...,qi,k

k∑
c=1

qi,c ln(μc pc(xi |θc)), qi,c ≥ 0,
k∑

c=1

qi,c = 1. (5.7)

To solve this optimization problem, we can still use the EM algorithm in Fig. 5.12
but with the E step replaced by the hard cluster assignment rule: qi,c = 1 if c =
argmaxl(μl pl(xi |θl)), and qi,c = 0 otherwise.

The EM algorithm can be used with any probability model, such as the naive
Bayes model, which we described in Chap.3. Another frequently used model is the

Gaussian model, where we assume pc(x |θc) ∝ exp(− (θc−x)2

2σ 2 ). The simplest case is
to assume that σ is a known quantity such as 1, andμc = 1/k. Under this assumption,
Fig. 5.12 can be used to compute themean vectors θc for the Gaussianmixturemodel,
where the E and M steps are given by

• (E step)qi,c = exp(− (xi −θc)2

2σ2
)

∑k
l=1 exp(− (xi −θl )

2)

2σ2
)
,

• (M step)θc = 1∑n
i=1 qi,c

∑n
i=1 qi,cxi .

This clustering method can be regarded as a soft k-means method. If we replace
the E step by the hard cluster assignment rule mentioned above, then we obtain the
standard k-means method.

Figure5.13 gives an example of EM iterations with a two-component Gaussian
mixture model and σ = 1. The mean vectors are initialized to 2.0 and 3.0. We report
the probability assignment qi,c for each document i in each cluster c after the E step
and the mean-vectors for the clusters after the M step.

Fig. 5.13 An example of EM clustering

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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5.3 What Do a Cluster’s Labels Mean?

Let’s assume that we have successfully clustered the documents. At the end of the
process,wehave k clusters.Wecan assignnumbers to correspond to different clusters.
Documents within the same cluster are expected to be similar. Yet, we need greater
insight into the process than just assigning a label without expressing meaning. In
a labeled prediction problem, the labels are assigned with care, often correspond-
ing to some exact event. For example, in text categorization, the labels are specific
categories for indexing documents, such as sports or financial newswires. Although
computer programs have no need for associating meanings to clusters, the reason
for even attempting prediction is the meaning and significance of the list of labels.
Where is this meaning for our clustering labels?

Figure5.14 shows the principal descriptors of the automatically generated cluster
labels. They are explained and motivated by key words or exemplar documents. We
should not lose sight of what we are clustering. Documents are composed of words,
and the distribution of words is the basis of document clustering. Surely we can use
these words to express the meaning of the result of the clustering. Documents are
clustered by similarity of words, so if we characterize a cluster by the right words, we
should be able to give the meaning or rationale for the reasonableness of the cluster.

The clusters have been assembled by automated procedures, a task that humans
would not attempt on their own. In a follow-up step, the computer may indicate the
key words that are representative of each cluster. This step is not very different from
composing a local dictionary for labeled data. In Chaps. 2 and 3, several techniques
were described for local dictionary composition relative to a single label. For exam-
ple, we could take all the basketball news stories in a collection and create a dictionary
solely from those news stories. Similarly, we can compose a local dictionary for each
cluster. The simplest approach is to take themost frequent words and then remove the
stopwords. Alternatively, the words with the largest average tf-idf measures might
be used. Another approach might involve feature selection procedures that select a
relevant set of words from a larger set, either a global dictionary or a large local
dictionary. The main concept is to find words that are representative of the cluster.
For example, one may use a scheme based on tf-idf measures to describe each cluster
using its most representative words. Instead of relying completely on automated pro-
cedures, the human expert can review the words generated by automated procedures
and make a final determination.

Fig. 5.14 Principal
descriptors of clusters

http://dx.doi.org/10.1007/978-1-4471-6750-1_2
http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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A label for a cluster can summarize very large numbers of documents. A cluster’s
key words help give meaning to those labels. Because clustering procedures process
unlabeled data, we might be particularly demanding in exploring the value of their
results. Unlike data for typical numerical applications, our documents have meaning
in their text. Someone has carefully written and published a document. Why not
use one or more documents to characterize the cluster? The technical problem is to
find a small number of documents to serve as exemplars for the much larger group
of documents in a cluster. There are many ways to do this. One simple approach
is to select the document that is most similar to the cluster mean vector. If the
cluster spans a large number of words, additional exemplars might be retrieved. In
addition to comparing potential exemplarswith themean vector, a pair of least similar
documents might also be considered. The procedures for selecting exemplars are far
from perfect. We expect the documents in a cluster to be similar. Thus, we should
be able to select a few that are “typical” documents. The human expert can read and
review these retrieved documents to understand the results of the clustering process
and to reach some decisions about their value.

5.4 Applications

We have presented clustering as the assignment of labels to documents. We saw
this within the context of a problem with the spreadsheet that we use to represent
data for prediction—it was missing the last column, and now we have methods to
compute and fill in the last column. In that sense, our venture into clustering has been
successful. Labels are necessary for the application of predictionmethods. Clustering
could have very wide applicability because it is often expensive to get correct labels.
Surely wewould like to avoid that expense. In practice, clustering is a weaker process
than learning from labeled data, and the expense is often justified by more accurate
predictions.

Beyond assigning labels, clustering has natural capabilities that are especially
beneficial for exploratory analysis. The hierarchical methods give structure to the
data, producing a taxonomy that maps relationships among the documents. These
are ways of summarizing and organizing documents whose connections are poorly
understood. The problems reported to help desks are good examples of the potential
benefits of clustering. Document collections are digital libraries, and we could make
an analogy with a traditional paper-based library. Clustering is a conceptual way to
organize the library, placing related books, such as mysteries, in a common loca-
tion. In our case, the clustering methods determine which books are related and also
determine the topics and hierarchical relationships among the topics. In a modern
paper-based library, search by computer has somewhat eclipsed the classical organi-
zation by topic. Users can search dynamically, and when they find the right material,
they just need a pointer to a shelf, or even a robot, that will retrieve the selected
item. One might argue that, for many applications, clustering has also been eclipsed
by search engines that can dynamically find nearest neighbors and allow users to
interact and reformulate their queries.
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One view of the benefits of clustering is the summarization of properties of a
document collection. To the previous types of summaries, we can add redundancy
and frequency detection. Using similarity measures, it is easy to find repeats of
documents. Theymatch in everyword. By changing the threshold ofmatchingwords,
documents that are potentially very similar, such as a problem report on the same form
of breakdown, can be detected. That gives us the opportunity to count the number of
similar items in a cluster or perhaps delete documents to eliminate redundancy.

Summaries of clusters are clearly of value in exploratory reviews of document
collections. Our main task is prediction. Although labels can be generated by clus-
tering, if they are not accurate, we cannot move closer to reaching our primary goal.
Next we look at evaluating the results of clustering, which give clues to the overall
success of both the clustering and prediction efforts.

5.5 Evaluation of Performance

For prediction problems, evaluation is straightforward. The computed answers are
compared with the correct answers, and accuracy or error rates are determined. If we
want to be fair and unbiased, we hide documents and only at the very end test our
methods and compare their results with the correct answers. Clustering starts with
unlabeled data, and using the same approach to evaluation is not feasible.

Let’s not worry about projecting into the future. Let’s just consider the quality of
the clustering results. The concept of clustering is to put similar documents in the
same group. One way of evaluating whether this has been achieved is to compute a
cluster mean and its variance or standard deviation.We can consider a deviation from
the mean to be a form of error and the standard deviation to be the typical error. If
documents within a cluster are similar, the variance of the mean will be low. In (5.8)
the overall measure of variance for all documents is computed, where S(i) is the
similarity result for document i , and MS(i) is the average of the similarity measures
for all documents in the same cluster as document i . The variance can be computed
over all n documents in the collection to get a global indication of effectiveness. It
can also be computed for an individual cluster to determine its performance and to
compare it with other clusters.

Variance =
∑

i

(S(i) − M S(i))2

n
,

Standard Deviation = Error = √
Variance. (5.8)

How is the similarity measure S(i) of a document computed? Similarity is computed
between a pair of documents. We have mentioned many choices for similarity mea-
sures, any of which could be used in (5.8). For example, similarity can be computed
using normalized tf-idf and cosine similarity. For k-means, a comparison would be
made between each document vector and the mean vector. Alternatively, we might
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simply count shared words. For k-means, each document would be compared with
the mean vector to see the number of shared words. In (5.8), S(i) is the number of
words shared between document i and the mean vector of its cluster, and the aver-
age of all S(i) in the same cluster is MS(i). As was done in hierarchical clustering,
S(i) could be similarity between document i and its most similar document in its
cluster or its most dissimilar document.Whatever measures are used to compute sim-
ilarity, they are averaged and a variance is computed. If we were using just simple
shared word counts, then a mean would indicate the average number of words shared
between documents. Error could be measured by the expected deviation from this
number. The error obtained by assigning all documents to the same single cluster
is the baseline measure which must be improved greatly to demonstrate meaningful
results.

Lurking in the background is the number of clusters and their size. It would be very
easy to specify a very large number of clusters, each containing few documents. The
variance computed for each cluster will be low, but the usefulness of the cluster may
also be poor. The tradeoff of complexity and error is implicit in this process. Without
correct labels, one has to have design goals and knowledge of the application. The
approximate number of clusters could be known, or an upper bound on an acceptable
variance might be declared so that a relatively small number of clusters are selected.

These measures of clustering performance can be quite informative. They sum-
marize the overall quality of the clustering process and can pinpoint clusters that
differ in performance from others. Taken with the other forms of summarization,
such as key words and extracts, the clustering results can help people make informed
decisions and interpretations. Although a fully automated process can be specified
for document clustering, it is wise to use knowledge to enhance the final results. We
all read and comprehend documents, so we can examine the clustering results and
evaluate the results on our own. One might even make a suggestion, such as altering
the number of clusters or the measures of similarity to predict the automated process.
One should not dismiss subjective human evaluation.

Document clustering is very compatible with information retrieval because it
organizes a static collection of documents. Our task is prediction, generalizing to
new unseen documents. Canwe predict and then evaluate without labels? Figure5.15
is an outline of how we might accomplish this mission. Let’s look at the mechanics
of prediction. We have a spreadsheet of structured data. The clustering process has

Fig. 5.15 Prediction and evaluation of unlabeled data
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provided a column of labels, so our spreadsheet is now complete and ready for the
application of predictive learning methods. In Chap. 3, we described the appropriate
way to organize data for prediction. Separate the data into train and test sets, which
is typically done by assigning the most recent documents to the test set. The learning
methods are applied to the training data, and the test data are used for evaluation.
Error analysis is the basis for evaluating various error rates. Recall and precision
can be measured. For the labels found by clustering, let us perform those same
forms of evaluation. It is true that the cluster methods look at all of our data to
assign labels. Our results for prediction will be biased optimistically because the
clustering methods viewed both train and test data. We should accept that weakness
and move on. Evaluations showing strong performance might be somewhat weaker
than indicated, but evaluations showing weak performance will surely be very weak.

Can we expect the labels assigned by clustering to lead to poor prediction? Con-
sider a situation where the true number of labels is much larger than the results for the
automated process. Clearly, the predictions for these labels will be missed. Yet, the
predictions on the fewer classes could be good because many labels will fall into the
“other” category. At the opposite extreme, we could have too many clusters, perhaps
assigning only one document to each cluster. Then the variance will look great, but a
nearest-neighbors method would have terrible results. To get good predictive results,
both the cluster and prediction methods must be successfully applied. That does not
guarantee that predictions are made for the most desirable outcomes. Clustering is
empirical, but it also projects with poetic license, having the potential for going off
in the wrong direction. However, if the labels appear reasonable, then we may get
some useful predictions without the expense of human-assigned labels.

5.6 Summary

Document collections are frequently encountered without labels. Labels may be
determined by clustering the documents into disparate groups and implicitly finding
common themes among the document clusters. This chapter describes methods for
clustering documents.Akey theme for document clustering is computingmeasures of
similarity. We review the major clustering methods: k-means clustering, hierarchical
clustering and the EM algorithm. Strategies for assigningmeaning to algorithmically
generated clusters and labels are considered. Performance evaluation helps determine
the empirical characteristics of desirable clusters.

5.7 Historical and Bibliographical Remarks

Clustering has been a topic of study in information retrieval formanyyears. Rocchio’s
method for clustering (Salton 1971) bears a close resemblance to k-means. Instead
of allocating the document set to k bins, the Rocchio method picks k documents

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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as exemplars and then finds which of the remaining documents are “close to” the
exemplars. A special class is created for documents close to none of the exemplars. At
each iteration, the cluster centroids are recomputed and the documents are reallocated
until there is no longer any significant change in cluster membership.

Clustering was first applied to both terms and documents, but experiments with
the SMART system did not show any advantage to clustering terms, and this activity
was more or less abandoned (but see Bekkerman et al. 2003). The continued interest
in clustering is partly due to the cluster hypothesis: “the associations between doc-
uments convey information about the relevance of documents to queries” (Jardine
and van Rijsbergen 1971). The question is, whether document collections satisfy
the cluster hypothesis. Answers to this question are not entirely clear-cut (Voorhees
1985). Nonetheless, there has been continued interest in clustering, particularly hier-
archical agglomerative clustering methods. A good review of this literature is in
Willett (1988).

A class of probability model based clustering methods called topic models has
become popular for text mining. These methods, also referred to as Latent Dirichelet
Allocation (LDA) (Blei et al. 2003), are related to probabilistic latent semantic index-
ing (PLSA) of Hofmann (1999). This is a vast amount of research activity on extend-
ing LDA models and on doing large-scale LDA for text on the internet. The mathe-
matics of LDA is beyond the scope of this book, and we refer the interested readers
to relevant research articles and surveys on the internet.

More recently, clusteringhas been applied toWorldWideWeb searches.Queries to
theWeb often result in verymany documents, and it is hoped that organizing the volu-
minous output will make it more useful (Dumais and Chen 2000). Another approach
is based on the idea that many Web searches are very general and exploratory. A
method for browsing these amorphous search results, called “scatter/gather”, was
proposed in Cutting et al. (1992). Search output is clustered, the clusters are pre-
sented to a user, who selects a few clusters as interesting, the documents in these
clusters are reclustered, and the new, presumablymore specific clusters are presented
again.

Finally, clustering has been used in studies of multidocument summarization
(Stein et al. 2000). Each document is summarized, the summaries are clustered, a
passage from each cluster is selected for the final summary, and the passages are
reordered.

The statistical approach of clustering based on mixture models has a long his-
tory. Although it is possible to use other optimization techniques to solve mixture
models, the most widely used method is the EM algorithm due to its simplicity and
intuitive statistical interpretation. The method was first presented in full generality in
Dempster et al. (1977). It has since attracted enormous attention. Many works have
appeared both on the application side and on the theoretical analysis of the method.
In engineering applications, the EM algorithm has often been used with Gaussian
mixture models. However, in text processing, it can be used with the multinomial
naive Bayes model (Nigam et al. 2000) since it is more natural to assume that each
cluster generates text through a naive Bayes model.
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The technique of k-means clustering appeared in MacQueen (1967). It has since
been used widely in practice. It is also simpler to implement and computationally
more efficient than the EM method. For text clustering, a version of the k-means
algorithm was studied in Dhillon and Modha (2001). Improvements to k-means
are described (Elkan 2003). Properties of the more general hard-clustering method
presented in (5.7) were considered in Kearns et al. (1997). A survey of statistical
model-based clusteringmethodswith experiments on text data can be found in Zhong
and Ghosh (2003). Evaluation criteria for document clustering methods and their
application to prediction are discussed in Banerjee and Langford (2004).

5.8 Questions and Exercises

1. Explain why Euclidean distance is not an appropriate metric for document sim-
ilarity.

2. Verify the computations in Fig. 5.13 using the algorithm in Fig. 5.12.
3. How can the EM algorithm be used to perform a k-means clustering?
4. List any one advantage of using the EM algorithm over the k-means algorithm.
5. In k-means, the means of bins change every time a document is moved. How

can the bin means be recomputed efficiently?
6. How is the centroid classifier related to nearest neighbour methods?
7. If we have a set of documents that are mostly similar except for a number of

important exceptions, which clustering method would be best to extract out the
primary cluster?

8. Show how the equations on p. 97 are obtained from (5.6).
9. How would you use a rule-based classifier to obtain useful descriptions of a set

of clusters?
10. Given a set of document clusters, devise a scheme for labeling the clusters so as to

distinguish them fromeachother.A label should also represent the characteristics
of the associated cluster.



Chapter 6
Looking for Information in Documents

An important research area for natural language processing and text mining is the
extraction and formatting of information from unstructured text. One can think of
the end goal of information extraction in terms of filling templates codifying the
extracted information. In this chapter, we shall describe information extraction from
this perspective and some machine-learning methods that can be used to solve this
problem.

6.1 Goals of Information Extraction

Natural language text in digital form is a very important source of information. Such
information is presented in an unstructured format that is not immediately suitable for
automatic analysis by a computer. We still are a long way from achieving complete
computer understanding of natural language text. However, computers can be used to
sift through a large amount of text and extract restricted forms of useful information,
which can be represented in a tabular format. Therefore, information extraction can
be regarded as a restricted form of full natural language understanding, where we
know in advance what kind of semantic information we are looking for. The main
task is then to extract parts of text to fill in slots in a predefined template.

We illustrate the concept of information extraction using examples of identifying
executive position changes. Every day there are many news articles and announce-
ments containing information on executive position changes in different companies.
Such information can be very useful for business intelligence but is represented in
an unstructured form not suitable for automatic computer processing. For example,
we do not know where in the text to find a person or the organization to which he or
she belongs. In order to represent such information, a computer program is needed
to automatically annotate the text. Consider the text given in Fig. 6.1, where entities
that we are interested in are denoted by italic fonts. The text is taken from an arti-
cle in The Wall Street Journal on February 24, 1994, and the named entities were
annotated in the Sixth Message Understanding Conference (MUC-6). The extracted
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One of the many differences between Robert L. James, chairman and chief executive
officer of McCann-Erickson, and John J. Dooner, Jr., the agency’s president and chief op-
erating officer, is quite telling: Mr. James enjoys sailboating, while Mr. Dooner owns a
powerboat.

Now, Mr. James is preparing to sail into the sunset, and Mr. Dooner is poised to rev up
the engines to guide Interpublic Group’s McCann-Erickson into the 21st century. Yester-
day, McCann made official what had been widely anticipated: Mr. James, 57 years old, is
stepping down as chief executive officer on July 1 and will retire as chairman at the end of
the year. He will be succeeded by Mr. Dooner, 45 . . .

Fig. 6.1 WSJ text with entity mentions emphasized by italic fonts

Table 6.1 Extracted position change information

Organization McCann-Erickson

Position Chief executive officer

Date July 1

Outgoing person name Robert L. James

Outgoing person age 57

Incoming person name John J. Dooner, Jr.

Incoming person age 45

information is represented in Table6.1 and can be stored in a relational database for
additional processing and analysis.

The task of information extraction naturally decomposes into a sequence of
processing steps, typically including tokenization, sentence segmentation, part-of-
speech assignment, named entity identification, phrasal parsing, sentential pars-
ing, semantic interpretation, discourse interpretation, template filling, and merg-
ing. A general information extraction system is illustrated in Fig. 6.2. Although the
most accurate information extraction systems often involve handcrafted language-
processing modules, substantial progress has been made in applying predictive
machine-learning techniques to a number of processes necessary for extracting infor-
mation from text.

The application of machine-learning techniques to information extraction is moti-
vated by the time-consuming process needed to handcraft these systems. They require

Fig. 6.2 Information
extraction system
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Fig. 6.3 Learnable information extraction system

special expertise in linguistics and additional skills in artificial intelligence and com-
putational linguistics. This, coupled with the expectation that domain-specific infor-
mation is required to build an accurate system, motivates research and development
of trainable information extraction systems.

The general architecture of a machine-learning-based information extraction sys-
tem is given in Fig. 6.3. There are typically two main modules involved in such
a system. The purpose of the first module is to annotate the text document and
find portions of the text that interest us. For example, in the first sentence of the
text in Fig. 6.1, we want to identify the string Robert L. James as a person and the
stringMcCann-Erickson as an organization. Once such entitymentions are extracted,
another module is invoked to extract high-level information based on the entity men-
tions. In the example of Fig. 6.1, we want to identify that the person Robert L. James
belongs to the organization McCann-Erickson. This information is then filled into
slots of a predefined template.

6.2 Finding Patterns and Entities from Text

Typical information extraction systems only partially parse the text (i.e., chunk the
text into typed phrases to the extent required to instantiate the attributes of a tem-
plate). The key rationale for this approach is the assumption that, for a wide range
of constrained applications, the predefined attributes of templates and the semantic
types of the attribute values permit the system tomake a reasonably accurate determi-
nation of the roles of the various typed chunks identified by the linguistic processors
(named entity identifiers, noun phrase chunkers, verbal group chunkers, etc.) with-
out attempting a complete sentence parse. The systems are typically organized as a
cascade of linguistic processors.

The first, and usually the most important, aspect of information extraction is to
find entity mentions from text. We shall describe the machine-learning approach to
this problem in greater detail.
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6.2.1 Entity Extraction as Sequential Tagging

Oneway of looking at entity extraction is to annotate chunks of text stringswith some
prespecified types. For example, we want to find mentions of people, locations, and
organizations in text. Our task is to divide text into syntactically related nonoverlap-
ping groups ofwords (chunks). For example, the sentenceOne of the many differences
between Robert L. James, chairman and chief executive officer of McCann-Erickson,
and John J. Dooner, Jr., the agency’s president and chief operating officer, is quite
telling … can be annotated as follows:

One of the many differences between [PER Robert L. James], [POS chairman and chief
executive officer] of [ORG McCann-Erickson], and [PER John J. Dooner, Jr.], the agency’s
[POS president and chief operating officer], is quite telling …

In the example above, chunks that start with PER denote person, chunks that start
with POS denote position, and chunks that start with ORG denote organization.

The most successful machine-learning-based approach to this task regards the
problem as a token-based tagging problem. The idea is to divide text into tokens
(words) and then assign each token a tag value that encodes the chunking informa-
tion. There are many different encoding schemes. One commonly used method is to
represent chunks by the following three types of tags:

B-X: first word of a chunk of type X,
I-X: noninitial word in a chunk of type X,
O: word outside of any chunk.

As an example, the sentence considered before in this section can be tokenized and
annotated as shown in Fig. 6.4.

One can now view entity detection as a sequential prediction problem, where we
predict the class label associated with every token in a sequence of tokens. In our
case, each token is either a word or punctuation in the text. The advantage of this
approach is that the task now becomes a simpler classification method, where the
goal is to predict the class label associated with every token. Therefore, methods
used for classification, such as those described in Chap. 3, can be applied.

Fig. 6.4 Entity detection by sequential tagging

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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6.2.2 Tag Prediction as Classification

In order to determine the label of a token, we create a feature vector for this token.
The label is then determined by the feature vectors. In many statistical approaches,
this requires us to estimate a conditional probability model. We use x = [x1, . . . , xd ]
to denote a d-dimensional feature vector associated with a token and t to denote the
tag value of the token. The task is to estimate the conditional probability Pr(t |x); that
is, the odds of a token’s label being t if its associated feature vector is x . We can then
assign the token a label that has the largest conditional probability score Pr(t |x).

If the number of possible labels and the number of feature values are very small,
then one can form a table of all possible feature values. At each feature value, we
compute the associated counts for every possible tag value. Given a feature value, we
then simply predict the class label associated with the highest count. This approach
does not work in practice since, in order to obtain good performance, it is necessary
to use a very large set of features. Although we construct each feature to capture
a particular linguistic pattern that is expected to help solve the problem, it is often
quite difficult for us to tell how useful each feature actually is. The learning algorithm
should have the ability to utilize a large set of features. The simple counting method
fails for this purpose for two reasons: it is computationally infeasible to store the
large table necessary for a large number of features, and we run into the so-called
data sparsity problem in that we do not observe enough data to obtain accurate class
label counts for each feature value.

A feature vector can be constructed in different ways. The most frequently used
feature-encoding scheme is binary encoding, where each feature component takes a
binary value: x j ∈ {0, 1}. The value of x j = 0 means that the feature component is
not active, and x j = 1 means that the feature component is active. Therefore, each
feature component can be regarded as a test that asserts whether a certain pattern
occurs or not. As an example, we can use a feature component to test whether the
previous token is the wordProfessor, which is clearly a good indicator of whether the
current token is in the B-PERSON category or not. In the binary-encoding scheme,
the feature component is 1 (active) if the previousword isProfessor and is 0 (inactive)
if it is not.

Note that restricting ourselves to binary encoding does not impose any serious
limitation. In fact, one may always encode a feature vector with multivalued fea-
ture components into a binary-valued feature vector since we can simply introduce
additional feature components in the binary-valued feature vector, one for each mul-
tivalue that may occur. Although we can use a large set of features (possible tests
of patterns) for information extraction, at any particular token, only a very small
subset of features are active. Therefore, an additional requirement for a desirable
classification method is the ability to handle sparse data efficiently.

The prediction methods described in Chap.3 can be used for token-based tagging
problems. Similar to text categorization, linear models are very successful for this
task due to their ability to take advantage of large feature sets. This means that the
designer does not have to worry about which feature is more important or more

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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useful, and the job is left to the learning algorithm to assign appropriate weights
to the corresponding feature components. A good learning algorithm should learn a
linear classifier such that the importance of each feature component is reflected by its
corresponding weight value. Asmentioned in Chap.3, in this approach, non-linearity
can be explicitly captured by sophisticated nonlinear features. For tagging problems,
each feature usually corresponds to a certain linguistic pattern that is predictive for
a certain class. We shall describe some useful features in greater detail later.

Now assume that we are given a carefully constructed feature vector x , and our
goal is to determine whether the label associated with x is t . In a linear model, we
seek a weight vector wt and a bias bt such that wt · x + bt < 0 if its label is not
t and wt · x + bt ≥ 0 otherwise. In the multiple label case, we compute the score
st = wt · x + bt for each possible value t and assign the label to the value t with the
largest score st .

In Chap.3, we described two methods that can be used to learn the weight vector
for such a linear decision rule. One is naive Bayes, which is very simple and efficient
but usually does not provide the best classification performance. The other method
is a linear scoring method based on minimizing a robust loss function, which we call
RRM (robust risk minimization). Both gave estimates of the conditional probability.
Although the RRMmethodworks verywell for information extraction, an alternative
method, called maximum entropy, has historically been used in the natural language
processing literature. This method is related both to RRM and to naive Bayes but is
computationally more expensive. Due to its importance in the information extraction
literature, we shall describe it in detail.

6.2.3 The Maximum Entropy Method

Recall that in naive Bayes, wemake the very simple assumption that, for each class t ,
each feature component is generated independently. Mathematically, (6.1) describes

this probability model, where Pr(x j = 1|label = t) = ewt
j /(1 + ewt

j ) and Pr(x j =
0|label = t) = 1/(1 + ewt

j ).

Pr(x |t) =
d∏

j=1

Pr(x j |t) = exp(wt · x)∏d
j=1(1 + ewt

j )
. (6.1)

Let c(wt ) = ∏d
j=1(1 + ewt j

) and bt = ln Pr(t) − ln c(wt ), then we have the
following Pr(x) = ∑

t Pr(t)Pr(x |t) = ∑
t exp(w

t · x + bt ). Using the Bayes rule,
(6.2) expresses the conditional class probability

Pr(t |x) = Pr(t)Pr(x |t)/Pr(x) = exp(wt · x . + bt )∑
t ′ exp(w

t ′ x + bt ′)
. (6.2)

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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Fig. 6.5 Graphical representation of generative and discriminative models. a Generative model.
b Discriminative model

Since Pr(x) is independent of the class label t , we may assign each token with
feature x a label t that has the largest score st = wt · x + bt .

Amajor disadvantage of naiveBayes is that the conditional independence assump-
tion in (6.1) is often too strong. This can be remedied by the maximum entropy
(MaxEnt) method, which is one of the most popular and successful methods in nat-
ural language processing.

Observe that for classification problems we are interested in estimating the con-
ditional probability Pr(t |x). The naive Bayes approach models the data probability
Pr(x |t) for each class, which induces a conditional probability as in (6.2). In the
literature, a classification method that models the class data probability Pr(x |t) is
often called a generative model, while a method that directly models the condition
probability Pr(t |x) is often called a discriminative model. Their graphical represen-
tations are given in Fig. 6.5, where the arrows represent the directions of the variable
dependencies. Since x is often of very large dimensionality, it is usually much more
difficult to have a good data model Pr(x |t) than a good conditional class proba-
bility model Pr(t |x). Therefore, the discriminative modeling approach in general
outperforms the generative modeling approach.

The naiveBayesmethod can be considered as amethod of estimating a conditional
probability model of (6.2), but relies on the unrealistic independence assumption in
(6.1). For a generative modeling approach such as naive Bayes, this kind of simplifi-
cation is always necessary in order to prevent the data sparsity problemwementioned
earlier. It reflects the fact that estimatingPr(x |t) is oftenmore difficult than estimating
Pr(t |x) directly. Therefore, a simplification is required in the more difficult problem
of estimating Pr(x |t), which leads to the relatively poor performance of naive Bayes.

The discussion above suggests that an immediate improvement of naive Bayes
is to find weight vectors wt that directly estimate the conditional probability model
Pr(t |x) of (6.2) without going through the naive Bayes data model. A direct condi-
tional probability model of (6.2) is often referred to as maximum entropy (MaxEnt)
in computational linguistics. This is because an exponential model of this form can
be obtained from the so-called maximum entropy principle. This particular relation-
ship isn’t important for our purposes, and thus we shall not explore it here. The
same conditional model has also been widely used in statistics, and is often called
(multicategory) logistic regression.
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A significant advantage of the maximum entropy model over the naive Bayes
model is that we do not need to have any independence assumption for the component
of the features. Since we directly model Pr(t |x), how the feature x is generated
becomes irrelevant. Therefore, the model in (6.2) does not make any assumption on
how each component of x is generated. This also indicates that in MaxEnt modeling
we only need to focus on creating features that are most useful for the problem,
without worrying whether different features are redundant.

Assume that we are given the training data (x1, t1), . . . , (xn, tn). The most com-
monly used method to estimate the weight vector in (6.2) is through the maximum-
likelihood estimate, which picks the weight vector to maximize the observed con-
ditional probability

∏n
i=1 Pr(t

i |xi ). Mathematically, the method is equivalent to the
minimization of

min
n∑

i=1

[
−(wt i · xi + bti

) + ln
K∑

t=1

exp(wt · xi + bt )

]
. (6.3)

The method above is similar to the RRM method described in Chap.3 in that
both seek weight vectors by minimizing loss functions averaged over the training
data. The main difference is that they minimize different loss functions. In practice,
performance of the classifier obtained is not very sensitive to different choices of loss
functions. However, some formulations are numerically easier to solve than others.

One can observe that the model in (6.2) is unchanged when each weight wt

is increased by a constant vector. Therefore, the solution of (6.3) is not uniquely
determined. One method to avoid this difficulty is to impose a constraint such as∑

t wt = 0 (and
∑

t bt = 0). This is especially convenient for binary problems,
where the labels take twovalues {±1}.Anothermethodof resolving this difficulty is to
use regularization, such as what we have employed for the RRMmethod described in
Chap.3. However, practitioners of the MaxEnt model often are satisfied with finding
any one of the possible solutions. A popular method for doing so is the so-called
generalized iterative scaling (GIS) method.

Before describing the algorithm, we shall rewrite MaxEnt in a slightly different
form. Consider weight vectors w1, . . . , wK and training data x1, . . . , xn . For each
i = 1, . . . , n and t = 1, . . . , K , denote by xi,t a (d +1)K dimensional vector, where
its components from (d +1)(t −1)+1 to (d +1)t −1 are given by the corresponding
components of xi ; its (d + 1)t th component is 1; and its other components are filled
with zeros. That is, each xi,t has a form xi,t = [0, . . . , 0, xi , 1, 0, . . . , 0]. We
also let w be a (d + 1)K dimensional vector, where for each t = 1, . . . , K , its
components from (d + 1)(t − 1) + 1 to (d + 1)t − 1 is given by the corresponding
components ofwt , and its component (d +1)t is given by bt . That is,w has the form
w = [w1, b1, w2, b2, . . . , wK , bK ]. Using the notations above, the linear score
wt · xi + bt can be rewritten as: wt · xi + bt = w · xi,t . Therefore, the model in

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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Fig. 6.6 The GIS algorithm

(6.2) can be regarded as a special case of the following slightly more general model,
which often appears in the computational linguistics literature:

Pr(t |xi ) = exp(w · xi,t )∑
t ′ exp(w · xi,t ′)

.

The maximum-likelihood estimate in (6.3) can now be rewritten as

min
n∑

i=1

[
−w · xi,t i + ln

K∑
t=1

exp(w · xi,t )

]
. (6.4)

We now describe the GIS algorithm that solves (6.4). The algorithm is shown in
Fig. 6.6. We use w j to denote the j th component of w and xi,t

j to denote the j th

component of xi,t . We also assume that each xi,t
j is binary (0 or 1).

In GIS, r i,t maintains the current sum w · xi,t . The quantity q j is the observed
frequency of the j th feature, and p j is the expected frequency of the j th feature
under the maximum entropy model (with the current weight vector w). From the
update rule of �w j , we can see that, if q j > p j , then w j is increased, which has
the effect of increasing the expected frequency p j in the next iteration. Similarly,
if q j < p j , then w j is decreased, which has an effect of decreasing the expected
p j in the next iteration. Therefore, GIS tries to update the weight vector so that the
expected frequency p j becomes closer to the observed frequency q j . It can be shown
that p j converges to q j eventually. Note that a weight vector is the solution of (6.4)
when p j = q j . This can be seen by setting the derivative with respect to each w j to
zero in (6.4).

Assume that we train a named entity recognition model using only tokens in
a window of size ±2. Table 6.2 shows an example of computed weights asso-
ciated for some tokens with their positions relative to the current token. With
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Table 6.2 Examples of linear weights for named entity recognition

Word Token position Weight

B-PER

b = −4.6

President −1 5.0

Clinton 0 4.5

…

Minister −1 4.4

…

Prime −2 1.4

…

Said 2 0.87

…

B-ORG

b = −5.0

Reuters 0 5.2

U.N. 0 4.8

…

Corp. 2 4.0

…

Joined −1 3.1

…

B-LOC

b = −5.2

US 0 5.7

Israel 0 5.7

…

Capital −1 3.4

Southern −1 2.5

…

these weights, consider the following sentence segment: Russian Prime Minister
Mikhail Kasyanov said on Monday …, and let us try to determine the label for
word Mikhail. Although neither Mikhail nor Kasyanov appeared in the training
data, the tagger correctly classified the tag associated with Mikhail to be B-PER
based on the context. In this example, the score for B-PER can be computed as fol-
lows: 1.4(Prime@−2)+4.4(Minister@−1)+0.87(said@2)−4.6(b) = 2.1. We
use the notation WORD@RELPOS to indicate that the feature associated with the
token WORD at the relative token position RELPOS (with respect to the current
token) is active.

Once weight vectors are computed, the classification rule for each feature vector
x is the label t associated with the largest score st = wt · x + bt . Although Max-
Ent works well in practice, the GIS method converges much more slowly than the
algorithm for RRM described in Chap. 3.

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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6.2.4 Linguistic Features and Encoding

Strong learning algorithms are very helpful, but in order to build a successful infor-
mation extraction system, it is essential to use good features that can characterize
the application. We shall describe such features in this section.

Although there are specific features that are problem-dependent, some local con-
textual features are useful for most entity extraction tasks. We shall describe a few
types of features below.Consider a sequenceof tokens . . . , tok−2, tok−1, tok0, tok1,
tok2, . . .. Assume that we have assigned class labels t i for each token toki (i < 0),
and we are examining the current token tok0.

• Tokens within a window (typical window size is two tokens to the left and right of
the current token): These features provide contextual linguistic information that is
useful for determining the class to which entity the current token belongs.

• Previously assigned class labels (typically the previous two labels): Since cer-
tain label sequences are more likely to happen than other label sequences (and
some sequences are prohibited), these features capture some information on the
interdependency of the label sequence.

• Token-based annotations from existing linguistic processing modules: for exam-
ple, the part of speech of the token or whether a token sequence matches a certain
linguistic pattern. Any additional linguistic annotation can be regarded as a fea-
ture. However, the following specific features are relatively simple and often very
useful:

– Token type features: Semantic or syntactic type information can provide useful
information; for example, whether the token is capitalized, whether the token
denotes a number, or whether it is in a specific semantic class.

– Character-based token features: These are character subsequences inside a
token, such as a prefix or suffix up to a certain length. These features capture the
composition of the word, which often yields useful information on its seman-
tic class. For example, for named entity recognition, one can sometimes guess
whether a word is a person name by simply looking at its character composition,
even though one has not seen the word before.

– Dictionary features: This feature determines whether a token phrase belongs to
a certain prebuilt dictionary or not.

• High-order conjunction of basic features: These are occurrence features. For exam-
ple, instead of taking token tok−1 and tok0 as separate features, we may use
their conjunction, which is essentially the token phrase {tok−1, tok0}. As another
example, instead of features expressing whether a token belongs to a first-name-
dictionary FD or a last-name-dictionary LD, we may create a conjunction feature
that checks whether tok0 belongs to FD and tok1 belongs to LD.

For each data point (corresponding to the current token tok0), the associated
features are encoded as a binary vector x , which is the input to the machine-learning
algorithm. Each component of x corresponds to a possible feature value v of a feature
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f such as described above. The value of the component corresponds to a test that
has value one if the corresponding feature achieves value v or value zero if the
corresponding feature achieves another feature value.

For example, since tok0 is in our feature list, each possible word value v of tok0
corresponds to a component of x : the component has value one if tok0 = v (the
feature value represented by the component is active) and value zero otherwise.
Similarly, for a second-order feature in our feature list such as [tok−1, tok0], each
possible value [v−1, v0] in the set of all observed two-token phrases (in the training
set) is represented by a component of x : the component has value one if tok−1 = v−1
and tok0 = v0 (the feature value represented by the component is active), and value
zero otherwise. The same encoding is applied to other features, with each possible
test of “feature = feature value” corresponding to a unique component in x .

Clearly, in this representation, the high-order features are conjunction features that
become active when all of their components are active. In principle, one might also
consider disjunction features that become active when some of their components are
active. Note that the representation above leads to a sparse but very high-dimensional
vector.Aswementioned earlier, this requires the learning algorithm tohave the ability
to take advantage of large features and the sparse vector representation. For high-
order features, the possible set of feature values can be very large.Oneway to alleviate
a potential memory problem is to use a hash table. This approach works because,
despite the high dimensionality of the feature space, most of these dimensions are
empty.

Figure 6.7 illustrates how a feature vector is generated for the token German. In
this example, a window size of five tokens, with the current token in the center, is
used. Token positions are relative to the current token. Note that the features also
encode positional information: “to at position +1” is a different feature from “to at
position +2.”

6.2.5 Local Sequence Prediction Models

Although it is possible to obtain good performance by separately predicting the label
associatedwith each token, it is often better to take advantage of the inter-dependency
among the label sequences, and jointlymaximize themost likely label sequence. This
can be achieved by sequential probability modeling and dynamic programming.

We shall briefly describe the idea without going into the technical details. Note
that, in our model, the feature vector xi can depend on the previous c class labels
t i−1, . . . , t i−c. Therefore, we can write the conditional probability for t i as

Pr( t i | sentence) = Pr(t i |x̃ i , t i−1, . . . , t i−c), (6.5)

where x̃ i is the part of xi that does not depend on the label sequence [t j ], and xi is a
concatenation of x̃ i and t i−1, . . . , t i−c. For notation simplicity, in the following, we
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Fig. 6.7 Tokens to feature vectors

will not differentiate xi from x̃ i , and simply denote the t i independent feature vector
by xi . This should not cause any confusion.

In the literature, this model is often referred to as local discriminative model,
which means that each t i depends locally on a few previous class labels (in addition
to the standard global feature vector xi which is independent of the label sequence).
The graphical representation of the local dependency relationship, for c = 1, is
in Fig. 6.8. In this figure, x1:n represents the information contained in the original
sentence that is independent of labels {t i }. The arrow from t i−1 to t i means that each
label depends only locally on its previous label.

Fig. 6.8 Graphical
representation of local
discriminative sequence
prediction model
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Once we have learned a local discriminative model, we can find the optimal label
sequence t1:n for a given sentence x1:n This process is called decoding. Instead of
finding t i one by one sequentially from i = 0, 1, . . ., it is common to search for a
label sequence {t i } that maximizes the overall probability

∏
i

Pr(t i |xi , t i−1, . . . , t i−c).

To obtain the exact solution, one can use dynamic programming, also referred to as
the Viterbi algorithm. However, in practice, it is often enough to do so approximately
with a simpler procedure. Instead of keeping just one sequence {t i } at each point,
one may keep the top-k sequences {t i } ranked by the joint probability seen so far.
When predicting the current label, we use all the top-k sequences. We then rerank
the new sequence with the current label included and then only keep the top-k label
sequences. We continue this process until finishing the last token. Then we output
the top-ranked label sequence as the final prediction. The sequential tagging-based
entity extraction is summarized in Fig. 6.9.

To see how this works, we shall illustrate the idea by a very simple example in
Table 6.3. Assume that we encounter the phrase New Mexico State University in the
named entity recognition task. For simplicity, we assume that the features we use
for each token are merely the previous, the current, and the next token, as well as
the label of the previous token. The rows of the table are the stages in the decoding
processwherewe look at each token from left to right one by one. The token currently
under examination is listed in the first column. The top two choices of probable labels
are listed in the remaining columns, where we use the format of first choice/second
choice.

Fig. 6.9 Sequential
tagging-based entity
extraction

Table 6.3 Decoding example

Current token New Mexico State University

New B-LOC/B-ORG ?

Mexico B-LOC/B-ORG I-LOC/I-ORG ?

State B-ORG/B-LOC I-ORG/I-LOC I-ORG/B-ORG ?

University B-ORG/B-LOC I-ORG/I-LOC I-ORG/B-ORG I-ORG/B-ORG
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When we start with the first token, New, the classifier can deduce based on its
right context that its label is mostly likely to be B-LOC but also possibly B-ORG.
If a decision is to be made immediately, the classifier will choose the incorrect label
B-LOC since it is more likely. However, in the decoding stage, we will keep both
choices and delay the final decision to a later stage when we can be more confident
about the correct label. After we process the token Mexico and see the token State,
we immediately deduce that its label should be B-ORG or I-ORG due to the right
context of University. Since an ORG label is much more likely to follow an ORG
label than an LOC label, the decoder can determine that the label sequence B-ORG
I-ORG I-ORG for New Mexico State has a higher probability than B-LOC I-LOC
B-ORG. This change is reflected in the fourth row of Table 6.3. Proceeding in this
way, after seeing the last token, University, we are able to obtain the correct label
sequence.

More generally, in a local discriminativemodel, onemayemploynon-probabilistic
prediction models by reducing sequence prediction into a standard classification
problem. In this approach, we simply predict the next label t i given the previous
label t i−1 and the observation x1:n . One may use any classification algorithm such as
SVM to solve this problem. The (linear) scoring function returned by the underlying
classifier can then be used as the scoring function in the Viterbi decoding algorithm
or its approximation described above.

Similar to the relationship of generative model (naive-Bayes) versus discrimina-
tive model (maximum entropy) in classification, one can also consider the generative
version of the local sequencemodel, which has a graphical representation in Fig. 6.10
(for simplicity, we do not plot the dependency of xi on model parameters (w, b)).
Such local generative sequencemodels are traditionally referred to as hiddenMarkov
models, where at each position, wemodel the relationship of xi given label t i , as well
as local dependencies of t i and t i−1 (or t i−1, . . . , t i−c). Here we may still employ
the naive-Bayes model for P(xi |t i ). However, in practice, the local discriminative
sequence models performs better than local generative sequence models because it is
easier to incorporate large number of features in xi in discriminative models without
making unrealistic independence assumptions among the features (as in naive-Bayes
like generative models).

Fig. 6.10 Graphical
representation of hidden
Markov model
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6.2.6 Global Sequence Prediction Models

The conditional probability model for the sequence {t i } is decomposed in (6.5) as
the product of local dependencies:

Pr(t1:n|sentence) =
n∏

i=1

Pr(t i |xi , t i−1, . . . , t i−c).

It corresponds to the graphical model in Fig. 6.8 with c = 1. Another approach is
to treat the prediction of label sequence t1:n directly as a multi-class classification
problem. If each label has k values, then the sequence t1:n can take kn possible
values. We can then directly generalize the MaxEnt model (6.2) to this kn-class
multi-category classification problem using the following representation:

p(t1:n|w, b, x1:n) = e f (w,x1:n ,t1:n)∑
t1:n e f (w,x1:n ,t1:n)

, (6.6)

where

f (w, x1:n, t1:n) =
n∑

i=1

w · zi (t
i , t i−1, . . . , t i−c, x1:n).

In this model, each feature vector zi (t i , t i−1, . . . , t i−c, x1:n) is similar to the feature
vector xi for predicting label i in the local discriminative model. While in (6.5),
we model the local conditional probability p(t i |t i−1, . . . , t i−c), which is a small
fragment of the label sequence t1:n , in (6.6), we directly model the global label
sequence.

The probability model in (6.6) is called conditional random field (CRF). More
generally, it is an example of global discriminativemodel, wherewe predict thewhole
label sequence t1:n simultaneously. The graphical model representation is given in
Fig. 6.11. Unlike Fig. 6.8, the dependency between each t i and t i−1 in Fig. 6.11 is

Fig. 6.11 Graphical
representation of global
discriminative sequence
prediction model
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undirectional. This means that we do not directly model the conditional dependency
p(t i |t i−1), and do not normalize the conditional probability at each point i in the
maximum entropy representation of the label sequence probability.

The CRF model is more difficult to train because the normalization factor in
the denominator of (6.6) has to be computed in the training phase. Although the
summation is over kn possible values of the label sequence t1:n , the computation
can be arranged more efficiently using dynamic programming. In decoding, the
denominator can be ignored in the maximum-likelihood solution. That is, the most
likely sequence {t̂ i } is the solution of

{t̂ i } = argmax
t1:n

n∑
i=1

w · zi (t
i , t i−1, x1:n). (6.7)

The solution of this problem can be efficiently computed using approximate search,
similar to the example we discussed for the local sequence model.

The main advantage of global sequence model is that it is less prone to the so-
called label bias problem. Although the problem is highly technical, the problem
can be roughly explained as follows. In the training of a local model, we use the
true labels (from previous few positions) to form each feature vector. However, in
decoding, due to errors, we are not going to find correct labels for each position
i , and this introduces a bias that is not present in our training data. Global models
alleviate this problem by considering all label sequences (including thosewith errors)
weighted according to their probabilities. Nevertheless, in many practical problems,
the benefit of global modeling appear relatively small.

6.3 Coreference and Relationship Extraction

After entity extraction, another useful module in an information extraction system is
coreference resolution and relationship extraction. Both workwith the extracted enti-
ties. In coreference resolution, the purpose is to determinewhether different extracted
entity mentions refer to the same underlying entity. The relationship extraction mod-
ule determineswhether two (ormore) entities have a certain prespecified relationship.
Coreference resolutionmay also be treated as a special case of relationship extraction
if we regard it as determining whether two entity mentions are identical. We give an
overview of learning-based methods for these tasks.

6.3.1 Coreference Resolution

Themain goal of coreference resolution is to group together different mentions of the
same underlying entities. For example, the person Robert L. James may be referred
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to as James later. We want to specify that they refer to the same person and group
these two entities together. A person may also be referred to by a pronoun later. For
example, Robert L. James can be referred to as he later. Therefore, in coreference
resolution, we would like to group them together as well.

Coreference resolution is very useful because by grouping different mentions of
the same underlying entity, we can merge information obtained on this entity from
different sources. Coreference can be performed eitherwithin one single document or
across multiple documents. Cross-document coreference resolution is usually more
difficult since the nameRobert L. James can refer to different people. Herewe confine
ourselves to within-document coreference resolution.

Not surprisingly, the most useful information for coreference resolution is string
matching. A few simple rules can do fairly well: we group entities with identical
strings together; we group pronouns with the previous extracted entity. One can also
extend the rules above by adding a few more rules, such as group a full name person
entity with same last name person entities, and group a full name organization entity
to its initial abbreviation organization entities, etc.

We can use a machine-learning information extraction system to improve rule-
based coreference resolution. Rules such as those described above can be used as
features of the learning system. The main machine-learning approach to coreference
resolution is to reduce the problem into decision steps consisting of determining
whether two entities belong to the same group or not. In this approach, the learning
problem becomes a binary classification problem that can be handled by methods
we described earlier.

If all of the binary decisions from the learning algorithm are perfect, then one can
simply link every two entities that are classified to be in the same group. However,
in reality, decisions from the learning algorithm are not perfect. For example, we
may encounter the situation that A and B are classified to be in the same group
and A and C are classified to be in the same group, but B and C are not classified
to be in the same group. Such conflicts can be resolved by using heuristics, which
intuitively group the entities into clusters such that pairwise connection within each
cluster is strong, and pair-wise connection between the clusters is weak. Naturally,
the grouping heuristics correspond to various clustering methods.

As an example, a relatively simple sequential greedy grouping algorithm works
as follows. We go through entities one by one from the beginning of documents and
form partial entity groups at each point. At each step, we use the learned classifier to
determine the probability of the current entity belonging to the same group of every
previous entity. We then compute an averaged probability score for each group and
pick the group with the largest average score. If the largest score is larger than a
threshold, then we assign the current entity to the group that is picked; otherwise,
we create a new group with the current entity alone.

To see how the procedure described above works on a concrete example, we
consider the following sentence, which contains three occurrences of organizations
and one pronoun (see Fig. 6.12).
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Fig. 6.12 Coreference named entity mentions pairwise scores

[ORG Loewen Group Inc] said on Monday that [PRONOUN it] has signed or closed acqui-
sitions totaling US $325 million since rival [ORG Service Corp International] launched a
hostile bid for [ORG Loewen] earlier this year.

We want to group the four entity mentions in Fig. 6.12 into clusters. In the pair-wise
approach, we first compute scores for each pair of these four mentions as listed in
Fig. 6.12. The scores can be obtained using a binary classifier such as the RRM
method or logistic regression. A positive score means the pair is likely to belong to
the same group, a score close to zero means not sure, and a negative score means the
pair is likely to belong to different groups. The score of a pair that involves a pronoun
is usually more difficult to estimate since this usually requires information from the
sentence structure, instead of string matching alone. This difficulty is reflected in
Fig. 6.12, where the pairwise scores s(M2, M3) and s(M2, M4) are relatively low
and uncertain.

Given the scores in Fig. 6.12, we can invoke the greedy clustering scheme with
a threshold of, say, zero. We start with M1 as a single cluster E1. In the next step,
we examine M2. Since s(M1, M2) > 0, we put M2 into the cluster E1. We then
examine M3. Since it has a negative score both with M1 and with M2, we determine
that it does not belong to E1. We thus create a new cluster E2 that contains M3 only.
Finally, we examine M4. We know it does not belong to E2 since s(M3, M4) < 0.
Although it is not sure whether M2 and M4 should belong to the same cluster (and
s(M2, M3) takes a default value of no), there is strong evidence that M1 and M4
belong to the same cluster since they share the same partial string Loewen. Therefore,
the averaged score is greater than zero, and we put M4 into the cluster E1.

The most important feature for determining the score of a pairwise connection in
coreference resolution is string matching (and partial string matching). As we have
mentioned above, if we have manually developed rules for coreference resolution,
then they can also be used as features. A number of other features are also very useful,
such as part-of-speech information, the syntactic head of the entity, the distance
between entities, and entity type information (people, organization, location, etc.).
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6.3.2 Relationship Extraction

Although relationships can exist among entities that are not in the same sentence,
those long-range relationships usually require semantic inference. The relation
extraction module in a typical information extraction system often is constrained
to relationships among entities in a single sentence. Such relational information can
be directly obtained from the syntactic structure of the sentence.

The most interesting relationships are often binary relations. For example, con-
sider the first sentence in Fig. 6.1, where we have a relationship that the person
Robert L. James belongs to organization McCann-Erickson. A binary relationship
takes two typed entities as arguments. In the example above, we have a belong-to
relationship that takes its first argument as a person and its second argument as an
organization. In this case, the order of the arguments is not interchangeable. Some
binary relationships may also take interchangeable arguments.

Learning binary relations among entitieswithin a sentence can be posed as a binary
classification problem. For each pair of entities in a sentence, we determine whether
they have a certain predefined relationship or not. In many cases, one may manually
write rules to match certain predefined parse structures for specific relationships.
Such rules can also be used as features for a machine-learning system. Predictive
methods for relationship extraction can also take other features. A very important
feature is the syntactic parse tree of the sentence. One may decompose a tree into
subtrees that can be encoded as features. Each of these features should also contain
its relative positional information with respect to the entities.

Consider the following sentence, with named entities extracted. There are three
entities, and we are trying to determine binary relations between each pair of them.
In this example, we will focus on relations between people and thus ignore the DATE
entity.

[PER Jon Smith] met [PER Mary Jones] on [DATE Sept. 17].

Assume that we obtain the following parse of the sentence, where each word is
supplemented with its normalization.

[SUB [PER Jon/jon Smith/smith/] ]

[VG met/meet]

[OBJ [PER Mary/mary Jones/jones]

[PP on/on [DATE Sept./Sept. 17/integer] ] ].

We can extract the following pattern from the tree, wherewe use the dash symbol—to
denote words that can be skipped.

[SUB – PERSON1 –] [VG – –/meet –] [OBJ – PERSON2 –].

This simplified tree pattern can be used as a feature for the learning algorithm, which
will then learn from the training data that a pattern of this type implies a relationship
of meet between PERSON1 and PERSON2.
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6.4 Template Filling and Database Construction

In general, a template is a more complicated structure than a binary relationship.
A binary relationship contains two typed entity slots to fill, while a template may
contain more than two slots, which can be organized into a semantically meaningful
group. In addition, in order to fill slots in a template, we may need to go through the
entire document rather than only a single sentence as in the case of within-sentence
binary relation extraction.

An example of a template is an event, which specifies a certain occurrence associ-
ated with entities at a specific time and place. For example, a person meeting another
person can be considered a meet event. In this case, the template has the following
slots: people involved in the meeting, the location of the meeting, and the time of
the meeting. This structure is more complex than one that regards meet as a relation
between two persons, as in the example we used in the previous section. From that
example, we can also note that the location of the meeting is not specified in the
sentence.

Therefore, for template filling, some slots can be missing since it is possible that
they are not specified in the text. In addition, slots in a certain template can be specified
in different sentences. In such a case, we need to identify whether two sentences refer
to the same template and then fill the template accordingly. This problem is similar
to named entity coreference resolution but is often more complicated.

The traditional information extraction literature mainly focuses on problems
where the whole article deals with only a single template. Often a slot of the template
can be identified with a particular entity type. For example, consider extracting infor-
mation from seminar announcements, where we want to know the speaker, talk title,
time, and location. The slots are extracted from an article, and each can be associated
with a different entity type. Therefore, once we extract the entity types, the template
can be easily filled using a simple rule that fills each slot with the corresponding
entity extracted from the text. Consider the following short seminar announcement.

Dr. Jon Smith from the IBM text analysis group will present a seminar entitled “The future of
predictive text-mining” on Tuesday, Sept. 2nd from 11:00 am–12:00 am in the auditorium.

We may create entity types SPEAKER (the speaker), ORGANIZATION (where the
speaker is from), TITLE (the title of the talk), DATE and TIME (date and time of
the talk), and LOCATION (the place of the talk). The announcement can then be
tokenized and annotated using a named entity recognizer as:

Dr. [SPEAKER Jon Smith] from the [ORGANIZATION IBM text analysis group] will
present a seminar entitled “[TITLEThe future of predictive text-mining]” on [DATETuesday,
Sept. 2] from [TIME 11:00 am–12:00 am] in the [LOCATION auditorium].

The desired template can be easily filled from the annotation above.
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6.5 Applications

6.5.1 Information Retrieval

One interesting application of information extraction is automated citation analysis
for academic papers. A notable example is theCiteseer search engine. The underlying
idea is to crawl academic sites and gather papers in a specific field. Then, by using
information extraction technology, one can extract information such as a paper’s title,
author, abstract, and bibliography list, as well as the context in which citations are
made. Further statistical and linkage analysis can then be applied on the extracted
information and provided as feedback to the users.

Another application of entity detection is natural language question answering.
Assume we ask the question: How far is it from Los Angeles to San Francisco? The
system answers 382 miles, based on the following sentence from its database: The
distance between Los Angeles and San Francisco is 382 miles. A question-answering
system classifies questions into various types and preprocesses its database to extract
entities marked with appropriately defined answer types that correspond to different
question types. In the example above, Los Angeles and San Francisco will be marked
as entities of city type, and 382 miles will be marked as an entity of distance (or
measure) type. From the question, the system first determines that the answer should
be a distance between two places called Los Angeles and San Francisco. These places
are then matched with sentences in the database, and then the entity of distance type
382 miles is extracted as the answer.

6.5.2 Commercial Extraction Systems

A number of small companies each have a fraction of the market for off-the-shelf
named entity extraction systems. Let us briefly look at three of them.

IdentiFinder is an incarnation of longstanding work in the area by Bolt, Beranek
andNewman (BBN). IdentiFinder uses aHiddenMarkovmodel to recognize entities.
Each word in a text is labeled with one of the desired class names or with Not-A-
Name. Separate bigram probabilities are generated for each type of entity. Statistical
models of this kind require substantial training data.

NetOwl is an outgrowth of work by SRA, Inc., on a system originally called
NameTag. SRA founded IsoQuest to market NetOwl. The NetOwl extractor goes
beyond the extraction of names to events connecting people and organizations to
items such asweapons ofmass destruction.A particular instance ofNetOwl is created
by writing a set of declarative data files that contain the task-specific content. These
are compiled into a configuration file that is read by the extraction engine. The
extraction engine, in consequence, is completely application-independent. Actual
name identification is accomplished by hand-crafted rules and dictionaries.
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ClearForest is an Israeli company that has made a number of sales to American
corporations and government agencies. Its software scans text and tags items of
interest for display to the customer. The tagging portion uses semantic, statistical,
and structural clues to classify documents and extract entities and relationships.
An application called ClearResearch organizes and presents the extracted data. A
module, Link Analysis, finds indirect links between entities. The extractionmodule is
based on “rulebooks,” handwritten rules specific to an application or customer. A set
of prewritten rulebooks is available for life sciences, counterintelligence, intellectual
property, and financial services.

6.5.3 Criminal Justice

Two prototype applications in the area of criminal justice have been described in the
open literature. One was sponsored by the US Department of Justice’s National Law
Enforcement and Corrections Technology Center. The project involved scanning
documents seized in raids and converting them to computer text files using optical
character recognition. The structured information (people, places, organizations)
from these papers is then entered into a database where standard visualization and
analysis tools can be used. The project was designed to investigate named entity
extraction for structuring. It used the commercial package IdentiFinder to extract
entities in a money-laundering case. The final report included a list of what would
be needed to put such a system into production.

In a similar project, the University of Arizona tested its neural-network-based
extraction system on police narrative reports from the Phoenix Police Department
dealing with narcotics crime cases. In this case, the entities were person, address,
vehicle, drug, and personal property. The named entity tagger did well on person
(precision 0.741, recall 0.739) and drug (precision 0.854, recall 0.779) and less well
on address (precision 0.596, recall 0.574) and personal property (precision 0.488,
recall 0.478). It was hypothesized that performance on addresses could be greatly
improved, but identifying personal property entities was inherently hard.

On the boundary between military and criminal applications is a project called the
Automated Counterdrug Database Update (ACDBU) program. It was established by
the Joint InterAgency Task Force on drug interdiction. The goal is to streamline and
automate counterdrug and maritime tracking operations. The program is capable of
extracting data from all military intelligence formats as well as from ordinary text.
Example entities extracted are names, locations, dates, andmoney values. The under-
lying software is IdentiFinder. Recognition rules are automatically trained rather than
being handwritten finite-state rules.
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6.5.4 Intelligence

Application of named entity tagging and information extraction for problems in mil-
itary intelligence and homeland security should not be surprising since much of this
research has been funded by the Defense Department. One prominent contractor to
the military and to Homeland Security is Inxight Software Inc., a spinoff fromXerox
Corporation to capitalize on 20 years of linguistic and artificial intelligence work by
its Palo Alto Research Center. According to a February 2003 press release, “using
Inxight software, intelligence analystsmight locate previously unknown people asso-
ciating with known terrorists/criminals or known terrorist/criminal organizations.”
The software is used to process hundreds of messages per day (intelligence reports,
e-mails, news articles, Web pages) to look for these links. In some cases, a simple
listing of the entities occurring in a document allows analysts to find documents of
interest simply by looking at the list rather than reading the whole document. The
software supports multiple languages, including Arabic.

This kind of software is deemed so important that theCIAhas established a venture
capital firm (In-Q-Tel Technologies) to support small companies working in the
area. One example is a company called Attensity, whose software extracts common
threads of information out of documents. Another example is Systems Research and
Development (SRD), which specializes in link analysis using a software package
called NORA (Non-Obvious Relationship Awareness) that traces links across data
banks between entities such as people, places, and organizations. This software was
originally developed for use by Las Vegas casinos to spot cheaters and card counters
by tracing links between individuals and earlier transactions. For example, it might
tell a casino that a job applicant once had the same address as a known criminal.

Although a detailed description of the application is not available, the FBI has
purchased ClearForest products in its counterterrorism data system, comprising over
a billion documents, with up to 1000 new documents each month. It is available on
the desktops of all its analysts, delivering visual, interactive summaries.

Named entity extractors can certainly have uses other than in intelligence and
criminal justice. One prototype system is designed to extract entities from Thai
agricultural documents to improve information retrieval. Another project, in Europe,
is intended to extract information in English, Greek, French, and Italian from Web
pages to facilitate product comparisons.A third example is formatting the information
in classified ads. Electronic Classifieds, Inc., used NetOwl as part of a system for
formatted access to the information in ads. For a car ad, NetOwl extracted year,
make, model, transmission, color, mileage, price, etc. Knight Ridder newspapers
uses a similar system for putting ad content into an object database, from which
it could more easily be retrieved. In the Knight Ridder system, there are up to 70
attributes for a vehicle. One of the problems at Knight Ridder is that their 31 papers
use a variety of front-end systems. Thismeans that the same content can have different
descriptions (e.g., “bedroom,” “bdrm,” “bdr,” “bed”). NetOwl is able to handle these
varying descriptions.
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6.6 Summary

A common task in natural language processing and text mining is the extraction
and formatting of information from unstructured text. One can think of the end
goal of information extraction in terms of filling templates codifying the extracted
information. The templates are then put into a knowledge database for future use.
This chapter describes several models and learning methods that can be used to solve
information extraction. We focused on two major subtasks, one is to extract entities,
such as person name, organization, etc. from sentences, and the other is to determine
the relationship among extracted entities.

6.7 Historical and Bibliographical Remarks

The field of text-based information extraction has a long history in the artifi-
cial intelligence and computational linguistics areas. However, modern evaluations
and progress of information extraction have greatly benefited from the DARPA-
sponsored Message Understanding Conferences (MUC) from the late 1980s to late
1990s. The lastMUCwasMUC-7.NIST stillmaintains aWeb site forMUCs at http://
www-nlpir.nist.gov/related_projects/muc/index.html that includes the proceedings
of MUC-7. This final evaluation includes results for IdentiFinder and NetOwl. In
the MUC-7 evaluation (Krupka and Hausman 1998; Miller et al. 1998), IdentiFinder
was trained on 790,000 words of New York Times newswire data. In the evaluation,
IdentiFinder had an F-measure of 90.44. On the same evaluation, NetOwl achieved
an F-measure of 91.6. The high F-measure for NetOwl and IdentiFinder is the result
of careful tuning on a well-understood task.

Multiple universities and organizations have participated in conferences such
as MUC, which helped to form the field of information extraction. After MUC,
NIST sponsored a new ACE program, which stands for automatic content extrac-
tion. Although similar to MUC, the task definitions are different. More information
on ACE can be found at http://www.itl.nist.gov/iad/894.01/tests/ace/.

Many of the earlier systems relied heavily on rule-based extraction patterns. See,
for example, AutoSlog (Riloff 1993), LIEP (Huffman 1995), PALKA (Kim and
Moldovan 1995), CRYSTAL (Soderland et al. 1995), RAPIER (Califf and Mooney
1998), SRV (Freitag 1998), and WHISK (Soderland 1999). Such systems often
directly target at template filling.

One disadvantage of this approach is that extraction rules are usually relatively
simple. It is quite difficult to take advantage of large features that incorporate different
information sources. Emphasis has shifted to more complicated machine learning
methods as well as combining machine-learning methods with rule-based systems.
For named entity extraction, machine learning methods were used in several systems
in the laterMUC conferences. For example, BBN’s IdentiFinder was based on HMM
(Bikel et al. 1999), and CMU’s MENE system was based on maximum entropy

http://www-nlpir.nist.gov/related_projects/muc/index.html
http://www-nlpir.nist.gov/related_projects/muc/index.html
http://www.itl.nist.gov/iad/894.01/tests/ace/
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(Borthwick1999). InMUC-7named entity extraction tasks, the best performancewas
achieved by using a combination of manually developed rules and MaxEnt learning
(Mikheev et al. 1998). Some more recent evaluations on multilingual named entity
extraction have been organized in the form of shared tasks as part of the Conference
on Natural Language Learning (CoNLL). The data sets used in the shared tasks are
publicly available from http://www.cnts.ua.ac.be/conll2003/ner/.

Coreference resolution was part of later MUC and the new ACE tasks. A number
of learning-based approaches appeared in the literature. One of the earliest machine-
learning systems was based on decision trees (McCarthy and Lehnert 1995) (also
see Soon et al. 2001). The clustering view of coreference resolution was explicitly
discussed in Cardie and Wagstaff (1999). This problem is also closely related to
Anaphora Resolution (Lappin and Leass 1994), which has been widely studied in the
computational linguistics literature. Relational learning can be regarded as a special
case of template filling. Systems for learning extraction patterns, such as RAPIER,
mentioned above, can be used for this purpose. See Craven and Slattery (2001),
Roth and Yih (2001), Zelenko et al. (2003) for additional automated approaches to
relational learning.

The principle of maximum entropy has a long history (Jaynes 1957). Non-
probabilistic discriminative local sequence models have also been widely used. An
example is Zhang et al. (2002). The global model CRF was introduced in Lafferty
et al. (2001). McCallum’s Mallet software package, obtainable from http://mallet.
cs.umass.edu, contains an implementation of CRF. More generally, global discrimi-
native learning refers to the idea of treating sequence prediction as a multi-category
classification problem with kn classes, and a classification rule of the form (6.7).
This approach can be used with some other learning algorithms such as Perceptron
(Collins 2002) and large margin classifiers (Taskar et al. 2004; Tsochantaridis et al.
2005; Tillmann and Zhang 2008). The GIS algorithm that we presented was pro-
posed and analyzed in Darroch and Ratcliff (1972). Although new methods such
as improved iterative scaling (Pietra et al. 1997) have been proposed, GIS is still
widely used in practice. Risk minimization and large margin methods have become
popular due to the success of support vector machines (Vapnik 1998) and boosting
(Freund and Schapire 1997; Breiman 1999; Hastie et al. 2001). They can be regarded
as generalizations of MaxEnt and can be applied to information extraction problems.
For example, a version of robust risk minimization was applied to the text-chunking
problem (Zhang et al. 2002). The algorithm described in Chap.3 was used in the
CoNLL 2003 named entity shared task; (Florian et al. 2003; Zhang and Johnson
2003), where results reported in Florian et al. (2003) achieved the top performance
among the 15 participating systems.

Details on commercial systems are rather sketchy, being closely held trade secrets.
In some cases, the basic ideas are known because the systems have their roots in
publicized university or research labwork, but one never knows howmuch reworking
has been done. Further details can be gleaned from the Web pages of the companies
mentioned and from brief news items in the computer trade press.

http://www.cnts.ua.ac.be/conll2003/ner/
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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6.8 Questions and Exercises

1. Give any two language-dependent features that might be appropriate for a system
that extracts named entities from documents.

2. How would one modify a text-mining toolkit in order to create a feature vector
for named entity extraction?

3. What are some the key factors that can affect the quality of results from a NER
system.

4. Using the advanced search module of your preferred search engine, look at the
first 50 results for the search “∗ KFC ∗ China ∗”. How many possibly useful
extraction patterns were found?

5. Starting with a potentially relevant and specific pattern, like “∗ set to ∗ open in
∗” or “∗ restaurants in ∗”, see how many out of 50 results are relevant at all and
how many restaurant pairs are found.

6. Some patterns are quite productive. Try “∗ merger of ∗” and note the number out
of 50 responses which refer to companies. Still, there are a significant number of
responses to filter.



Chapter 7
Data Sources for Prediction: Databases,
Hybrid Data and the Web

Our explication of predictive text mining has focused on data sources that are collec-
tions of documents. It’s a pure world where all data are texts composed of words and
alphanumeric characters, not numbers. Similarly, the world of classical statistics and
data mining expects purity of data, composed of spreadsheets, tables and numbers,
where text is an unnatural fit. Data mining is characterized as processing structured
data, and text mining works with unstructured data. In this chapter, we relax this
separation and consider different types of mixed data, both numerical and text.

Collecting data and preparing for analysis can be tedious and complex tasks.
Predictive text mining is often high-dimensional, making a carefully assembled and
large sample critically important. Theweb is an increasingly valuable source of docu-
ments. For some web-based data sources, documents are formatted in a standardized
form, readily amenable to further processing and mining. In this chapter, we discuss
the adaptation of predictive mining techniques to web-based data, amalgamating
structured, hybrid and unstructured data.

7.1 Ideal Models of Data

7.1.1 Ideal Data for Prediction

Most machine learning methods for prediction expect data in the form of a single
table, such as illustrated in Fig. 1.2. This is equivalent to the ubiquitous spreadsheet
in csv (comma-separated values) format that represents a sample of data. Each row
is an example, like a patient record, and each column is a recorded measurement
or finding. All entries are ordered numerical variable or categorical, true-or-false
variables. One column is reserved for the target or label and is either true or false for
classification, or ordered numerical for regression.

The prediction model anticipates structured data, and the learning methods are
highly developed. Data sources abound. For smaller applications, spreadsheets may
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Table 7.1 Useful Linux
commands

Cut Cut out the specified columns from a table

Paste Paste the rows of two tables together

Join Join two tables using a key

Sort Sort rows of table

Table 7.2 Transforming
XML to structured table

Produce dictionary = feature set

Measure numerical property of each feature = column

Record values for each document = rows

contain the full sample. For larger problems, databases with linked tables are a
ready source of structured data. Some additional data preparation is typically needed,
specialized to the application. Linux commands, such as those listed in Table7.1 are
highly effective in assembling the single table needed by prediction methods. A
good portion of many data-mining efforts is spent on transforming data into this
ideal format. When data reside in a database or spreadsheet, the conversion is not
usually difficult.

7.1.2 Ideal Data for Text and Unstructured Data

For text, the ideal representation is inXML, such as the example illustrated in Fig. 2.1.
Within each document, the label is identified, and the body of alphanumeric text is
presented. This hardly looks like the tables described previously for structured data
that are ideal input for predictive models. Yet, the end result is the same. The XML
data are translated into a table that fulfills a tabular representation for structured data.
Once text is wrapped in an XML format that is consistent for each document, it could
be considered structured data, mappable into a table. Table7.2 summaries the steps
of the transformation of XML to a numerical format. Words or tokens are features
and they are measured in the tabular columns. A measurement can be as simple as
the presence (1) or absence (0) of the word in a document. Measurements are made
for each document and recorded in a row or table.

7.1.3 Hybrid and Mixed Data

In many instances, numerical and text data can be merged into a shared format for
prediction. In the simplest situation, tables derived from alternative numerical or
textual sources have the same number of rows, and the tables can be pasted together.
While it is natural to consider analysis of numerical and text data as distinct and

http://dx.doi.org/10.1007/978-1-4471-6750-1_2
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Fig. 7.1 Merging data from documents and databases

Fig. 7.2 Extracting values from documents to fields in tables

independent tasks, a hybrid approach that combines both sources can be beneficial
and enhance predictive quality.

The hybrid approach combines tables from difference sources, all related to the
same topic and prediction label. It does not matter whether the original data originate
in database tables or documents. They all complete their voyage as simple tables with
measurements on the same examples. They can be combined as illustrated in Fig. 7.1.

An alternative view of text mining is to populate a database by browsing through
documents and extracting the information necessary to populate a field or measure-
ment in the table.We have referred previously to this task as “information extraction.”
For instance, we may be composing a table where each row is an example of a prod-
uct. We might roam the web to compose this table. One important feature might be
the current product price. This missionmay imply knowledge of how to find the price
in the document and then to extract it and enter in the table. Some data may be read-
ily available from sources in tabular formats. Others may be dynamically extracted
from web pages. Figure7.2 illustrates extracting a single value from documents and
then populating a field in a table. The original data sources are mixed collections
of structured and unstructured documents. This scenario can be more complex than
accessing a database because specialized knowledge is usually required for informa-
tion extraction. A simple XML representation of just a label and the remaining body
of text in documents is not sufficient to directly describe fields that are to be filled in
a table.
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7.2 Practical Data Sourcing

How close do data sources come to the ideal model? The better the fit, the less need
for extensive data preparation. If the data are already in a table, a variant of csv
format, then the path to an ideal format is usually clear. That does not mean that no
additional transformations will be necessary. Rather, these transformations will be
perceived as relatively close to an ideal data format for prediction. Because much
structured data, i.e. numerical or coded data, resides in databases or spreadsheets,
predictive modeling is a natural fit for many real-world database applications.

When documents in digital form are labeled, the conversion toXML for prediction
is trivial. Tags are confined to a few simple fields like the body of text and the label.
Figure7.3 is an example of a standard representation. Once data are in this simplified
format, they canbe translated directly into a tabular format using a dictionary ofwords
as features.

Fig. 7.3 PubMed XML example. With kind permission from Springer Science+Business Media:
Acta Diabetologica, exercise therapy in type 2 diabetes, vol. 46, pp. 263–278, 2009, Stephan F.E.
Praet and Luc J.C. van Loon
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The natural home for structured numerical data is a data base or spreadsheet.
The source of such data, often through proprietary databases, is well-established. In
contrast, sources of documents are increasingly web-based. An emerging trend is
the greater use of richer XML notation, where many tags are specified, giving much
greater structure to document content. This additional structure facilitates informa-
tion extraction. For example in Fig. 7.3, which is an excerpt from a research paper,
has a tag for the author names.

Extracting documents manually from the web is obviously too cumbersome to be
practical. Different mechanisms can be found to automatically download a web page
and related pages. For illustration, we will look at a built-in Linux command, wget,
that performs this function:

wget [options] URL

The wget command has many options. Try searching for them on the web. The
simplest form just downloads the page at the specified URL. Using wget, a script
could be composed to download automatically specific pages en masse from the
web. If these pages all contain a field in a consistent location, preceded and followed
by certain tags or keywords, then a Linux command like awk could be used for
information extraction. The following command extracts all text between string1
and string2:

awk -/sstring1/, /string/

We have seen that numerical or coded data are readily obtained from databases
and are consistent with a data model for prediction. Documents can be formatted as
a simplified XML specification and then mapped into a standard table that is also
consistent with prediction. If matched properly, data from both of these sources can
be amalgamated into a hybrid model of data. The web is a massive and growing
source of documents that may be used advantageously in text mining, especially
when increasing numbers of sites are structuring text in richer forms of XML. In the
next section, we examine a few scenarios to illustrate these concepts.

7.3 Prototypical Examples

The web is a rich source of non-proprietary information, some of which is close to
our desired representation for data. Data that was once expected to be unstructured,
when accessed through the web is seemingly structured or readily translated into a
tabular format. We will look at several examples of these concepts in action. They
are not meant to be complete. Rather, they illustrate the potential for preparing data
found on the web that may be combined with data from alternative and structured
sources. In the examples that follow, the format is correct at the time of writing. A
web site could change their format, requiring some modifications to reproduce the
same results. For each example, we provide an auxiliary Linux script that implements
the procedures that download the data or output results.
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Table 7.3 Google’s stock price data from Yahoo! Finance

Date Open High Low Close Volume Adj close

2009-10-28 547.87 550.00 538.25 540.30 2567800 540.30

2009-10-27 550.97 554.56 544.16 548.29 3216500 548.29

2009-10-26 555.75 561.64 550.89 554.21 2970400 554.21

2009-10-23 555.25 557.89 551.20 553.69 2392700 553.69

2009-10-22 550.00 555.00 548.00 554.09 2336500 554.09

2009-10-21 549.91 559.35 549.00 551.10 3670600 551.10

2009-10-20 551.64 552.95 540.70 551.72 4043700 551.72

2009-10-19 552.69 553.60 548.73 552.09 3217900 552.09

2009-10-16 547.33 554.75 544.53 549.85 8841900 549.85

…

7.3.1 Web-Based Spreadsheet Data

Many sites have downloadable data in csv format. This is common for financial
data. Using the following command, typed on a single line, the complete history of
Google’s stock price can be downloaded from yahoo.com:

wget -O
goog.csv http://ichart.finance.yahoo.com/table.txt?s=goog&
a=00&b=2&c=1987&d=12&e=2&f=2009&g=w

The required input format can be obtained by manually going to yahoo. The data
are downloaded to goog.csv in the format of Table7.3.

These data are close to the standard prediction format. The are inherently numeri-
cal, not text. For prediction, adjustments and transformationswill bemade depending
on application goals. For example, a goal might be to predict the price one month
from now. The features usedmight be an average of prior values within a 2weekwin-
dow. In this discussion, our purpose is not to describe a specific prediction problem.
Rather, the objective is to obtain data and transform that data into a format suitable
for prediction. If the data can be saved in csv format, then they are likely suitable for
machine-based prediction with some massaging.

7.3.2 Web-Based XML Data

Obtaining numerical data in standard csv format is no surprise. Spreadsheets and
tables are ubiquitous, and it is natural for web sites to prepare data in this style.
Similarly, a structured description of text can be posed in XML and these data can be
downloaded. Once text is described inXML, and the style is consistently recorded for
all documents, the complexity of addition data prep is not great. Just as someweb sites
provide numerical data in csv format, some provide text in XML format. A natural
candidate for dispensing a rich description of documents is a literature repository.
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Fig. 7.4 The script getpubmed

Here is an example from the MEDLINE research paper library, developed by the
National Library Of Medicine of NIH.

The NLM maintains an online library, PubMed, of research articles related
to medicine and life sciences at medlineplus.gov. A related URL of interest for
researchers is http://eutils.ncbi.nlm.nih.gov. A query can be submitted and article
abstracts can be retrieved from this library. Implicitly using wget, a query might be
submitted by executing the script getpubmed of Fig. 7.4 as shown below, where the
search term is H1N1:

getpubmed h1n1

The related articles are retrieved using the appropriate options, and the document
format is XML. Figure7.5, is an abstracted example of one the documents for h1n1.
Because these documents are nicely formatted, they are amenable to information
extraction. For example, the title of each document is tagged and can be extracted
for each document. In Fig. 7.6, the words in the title of each document are submitted
to a Google search and the hit count is recorded. The goal is to find a rough measure
of the potential uniqueness or relevance of each of the articles on H1N1—are they
new concepts, well-studied areas, or topics of special interest?

The PubMed data are exceptionally well-organized for both prediction and infor-
mation extraction. It is a preferred representation of text and documents, especially
with a uniform tagging scheme. While an emerging trend in document storage is
to provide enhanced XML descriptions, most documents will be encountered in
straightforward text format that is not captured clearly by XML tags and descriptors.

7.3.3 Opinion Data and Sentiment Analysis

7.3.3.1 Collecting Opinions

To measure the opinions of a population, the traditional approach is to do a survey
or take a poll. Some of the most widely followed polls are those taken prior to an

http://eutils.ncbi.nlm.nih.gov
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Fig. 7.5 An abstracted H1N1 document from PubMed. With kind permission from Springer Sci-
ence+Business Media: Virus Genes, molecular evolution of novel swine-origin A/H1N1 influenza
viruses among and before human, vol. 39, pp. 293–300, 2009, Na Ding, Nana Wu, Qinggang Xu,
Keping Chen and Chiyu Zhang

1640 Clinical characteristics of paediatric H1N1 admissions in Birmingham, UK.

33600 Swine-origin influenza virus H1N1, seasonal influenza virus, and critical
illness in children.

2100 Person-to-person transmission of oseltamivir-resistant influenza A/H1N1
viruses in two households; Germany 2007/08.

4000 Controlling the novel A (H1N1) influenza virus: don’t touch your face!

841 Influenza epidemiology and characterization of influenza viruses in
patients seeking treatment for acute fever in Cambodia.

888 Oseltamivir-Resistant Novel Influenza A (H1N1) Virus Infection in Two
Immunosuppressed Patients—Seattle, Washington, 2009.

Fig. 7.6 Google hit counts for titles of H1N1 documents

election as well as many periodic economic surveys like for consumer confidence.
A goal of many surveys is to gauge future trends or measure qualities that will affect
economic performance. A high-quality survey adheres to rigorous selection criteria
for participants and an objective set of questions accompanied by a careful survey
protocol. Sometimes we eventually get the true answer like in an election where the
result is expressed in very simple terms by the winner and loser. The proliferation
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of technology and prolific computer-based record keeping has created opportunities
for alternative types of surveys. Unlike traditional active survey-taking, these newer
types of surveys are passive and access stored data. In healthcare, the traditional
double blind study may be the gold standard, but with electronic patient records, a
passive alternative source of data is available for study. One may criticize the quality
of these data on scientific grounds, yet these sources are often massive in size, way
beyond any active survey. Using them may involve minimal cost. In the context of
machine learning, the main question is whether using such data can be predictive.

7.3.3.2 Product Reviews

The web is a home for diverse opinions. One form of opinion that has credibility is a
product review.Web sites like amazon.comencourage users to provide reviews.As an
example, we examine the reviews for an air compressor used to inflate automobile
tires. The compressor, used by one of the authors of this book, generally worked
well, but occasionally blew the car’s fuse. Amazon had 35 reader-entered reviews.
No special XML here. Just a need to process the text of 35 documents and assign a
label for each one. Readers rate the product on a scale of 1 to 5.Wemapped these into
2 labeled groups: positive (4 or 5) or negative (1 or 2). Only 2 reviews were rated
3 and were ignored. These documents are readily downloaded from amazon.com
using the following command (on a single line) repeatedly using incremental page
numbers:

wget"http://www.amazon.com/Industries-HV40-SuperFlow-Portable-
Compressor/product-reviews/B000BMBTA2/ref=cm_cr_pr_link_next_2?
ie=UTF8&showViewpoints=0&pageNumber=2&
sortBy=bySubmissionDateDescending"

Figure7.7 illustrates an excerpt of the sample following a few simple data prep
steps. Thus, we have a standard prediction problem. Even before worrying about
prediction, a dictionary must be assembled. Using the most frequent words (minus
the stopwords) in the negatively reviewed documents, the dictionary of Fig. 7.8 is

Fig. 7.7 An example product review on amazon.com
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Fig. 7.8 A dictionary extract
from negative reviews

Fig. 7.9 Decision rules for
review classification

determined. Note that “fuse” and “blew” are present in this small dictionary, which
might already be helpful to potential purchasers. The word “fuse” occurs in 13 of the
35 reviews, and the average rating is 3.4. In terms of prediction, we tried exploratory
rule induction. While the sample is too small for reliable empirical validation, a
few induced rules are described in Fig. 7.9 that discriminate negative from positive
reviews.

7.3.3.3 Sentiment Analysis

Arelated, butmore general type of opinion evaluation is known as sentiment analysis.
Here the objective is to peruse data on the web and determine whether sentiment is
favorable or not. Just like standard polling, the targets can be wide-ranging. For
example, a favorability index could be computed to measure a company’s overall
brand image, or a product’s image or perhaps public opinion of a political issue.
Unlike regular polling, no individuals are interviewed. Instead, text and documents
from the web are reviewed. The data sources could be blogs for political analysis,
professional product reviews or discussion groups for product and company image
analysis. The possibilities for sentiment are unlimited, but the conclusions are often
restricted to a favorability measure.

The analysis of reviews described in Sect. 7.3.3.1 could be considered a form of
sentiment analysis. Those reviewswere labeled, thereby driving our understanding of
positive and negative words and phrases. For many applications of sentiment analy-
sis, massive amounts of data may be processed, and these documents are unlabeled.
A favorability index can still be computed when a dictionary is composed using
prior knowledge or experience. For example, two dictionaries are compiled, one
with favorable words and a second one with unfavorable words. Very general dictio-
naries of these types have been composed independent of application. Clearly, they
are not as specific as those obtained from specialized product reviews or other con-
strained topics. Still, for many applications they can be reasonable, especially when
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Fig. 7.10 Computing a
favorability index

augmented by domain knowledge. Armed with lists of favorable and unfavorable
words, simple strategies can be specified to create a favorability index. Figure7.10
describes a straightforward strategy. The strength of this approach comes from the
sheer size of the sample, rather than the actual predictive technique. Each document
is classified as positive or negative based on the tf, term frequency, of positive and
negative words. The overall sentiment is a ratio of positive to negative words.

If this procedure is applied to the product review example of Sect. 7.3.3.1, using
dictionaries that include the high frequency words, the favorability index of 3.6 is
almost equivalent to correct average user-rating of 3.4 on a 1 to 5 scale.

7.3.3.4 Twitter Sentiment Analysis

For purposes of text mining, Twitter has emerged as a rich source of data for mea-
suring population sentiment. Its 140 character limit for a tweet is almost ideal for
straightforward computer processing. Tweets are hardly random samples of data, but
the number of tweets is massive and provide opportunities to measure population
sentiment. It’s the study designer’s responsibility to make the most of organizing
the protocol and questions, but the data collection does not involve the complexity
of a traditional active survey. This passive form of survey has clear advantages in
simplification and can be much more timely than some complex surveys.

Howwell does it work? One extreme test is predicting the stock market. A widely
cited and published paper that used sentiment analysis for measuring population
sentiment, reported exceptional experimental results, claiming to predict the next
day’s USA Dow Jones Index direction, up or down, with 86.7% accuracy. Using
almost 10 million tweets from the year 2008, they designed a prediction model with
two components: a time-series predictor based on the most recent 3 days of prices
and a mood-based model that relied on word patterns in the Twitter data from several
days earlier. The 6 moods they explored are listed in Table7.4.

To determine the public mood, they looked for tweets like “I feel” and then the
key words like “on edge” or “panicky.” 72 of the key words and phrases appear in a
psychologicalmanual onmoods. Thesewere augmented by relatedwords found in an
online Google thesaurus. Of the six moods, only “calmness” was highly correlated
with stock index movement. A machine learning model was used to combine the
calmness prediction with the time-series prediction.
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Table 7.4 Possible moods in
twitter data

Calmness

Alertness

Sureness

Vitality

Kindness

Happiness

This paper and its results were highly influential in encouraging people to rum-
mage through Twitter feeds for predictive information. Since its publication, many
have questioned the original paper’s optimistic results. For financial predictions, the
model can be deployed in an attempt to make real money. In this case, this was
briefly done by establishing a trading fund that quickly shut down. One can debate
the true accuracy of the study, but its influence is strong in other ways. These include
the explosive growth in the use of Twitter data for measuring population attributes
and the combining of text-based attributes with other measurements that enhance the
quality of the final prediction.

While it’s doubtful that these financial results can be replicated in today’smarkets,
hedge funds are exploring and employingmanyquantitativemodels to gain advantage
for their funds. Many of these predictive models are proprietary and possibly short-
lived, The classical form of prediction—a legal variant of front running—has found
its niche in Twitter discovery. Here one is watching Twitter in real-time for predictive
information, and then reacting rapidly to take advantage of that information. For
example, a plane crash, a disease outbreak on a plane, a company takeover, all provide
valuable trading information when known before it is widely circulated. Software is
readily available that tracks, in real time, tweets for specialized topics.

7.4 Hybrid Example: Independent Sources of Numerical
and Text Data

In Sect. 7.3.1, we observed that Yahoo! Finance is a good source of historical stock
price information, and the data can be readily downloaded from their website. That
same website also posts the latest news articles for individual companies. Both forms
of data, the price information and the news articles, could be useful in tracking stock
behavior and potentially for prediction of price movements. In this example, we
record the 50 and 200day moving averages and the current and previous closing
prices. To obtain this information from yahoo.com, the following command can
be used, where the stock symbol is filled in as IBM, and various codes special to
yahoo.com are listed, like m3 for 50day moving average:

wget"http://quote.yahoo.com/d/quotes.csv?s=ibm&f=m3m4l1p"
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Table 7.5 Possible prediction goals

Target closes above or below previous closing price

Target closes above or below 50day moving average

Target closes above or below 200day moving average

Table 7.6 Hybrid data from documents and databases

Sym Online Servers Gmail r50by200 r50p r200p ma50 ma200 ltrade Up

Ibm 4 2 0 1.088 0.981 0.902 119.091 109.445 121.35 1

Google 7 9 12 1.120 0.952 0.850 474.707 423.869 498.74 1

Yahoo 10 6 5 1.043 0.916 0.878 15.8483 15.1904 17.30 1

With these data, a simple prediction problem could be specified from the variables
described in Table7.5, which could be computed at some fixed interval such as daily
or weekly. Possibly more than one company could be considered in the same sample.

Using this strategy, sample data could be collected at fixed intervals and added
to the training set. Alternatively, just the closing price data could be downloaded,
and a program could compute the relevant moving averages and their relation to the
current price. The result of this process is a csv file, composed of numerical data,
that is ready for use by standard prediction methods.

For each stock symbol, yahoo.com provides the latest business headlines for the
company fromnewswire services like Reuters or Forbes. These can be obtained using
the following command, where IBM is the company queried:

wget "http://finance.yahoo.com/rss/headline?s=ibm"

These documents can be processed in the usual way: creating a dictionary and
vectorizing the stories into a single example for a company’s headline documents.
The headlines and news stories might be collected simultaneously with the price
data by two independent operations. The transformed data from the two sources
is combined into a single example by a simple paste operation of the two vectors.
The resultant process for combining data for IBM, Google and Yahoo on a specific
date is shown in Table7.6 where word frequencies for online, servers and gmail are
combined with various ratios and moving averages of stock prices and the predictive
goal is whether the stock price went up or not.

7.5 Mixed Data in Standard Table Format

In Sect. 7.4, hybrid data were assembled from two independent sources. For predic-
tion applications, a typical data sourcing environment is mixed data, some numerical
or categorical variables, some text. The tables are well-organized. Each row is an
example and the features, or columns are consistently recorded. The numerical fields
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Table 7.7 Factors
for cardiovascular
disease

Gender

Age

Diabetic

Smoker

Systolic blood pressure

Total cholesterol

Good cholesterol (hdl)

Waist size

Family history of cardiovascular disease

(Cholesterol) medication

Outcome: cardiovascular disease code (ICD9 codes)

can be readily separated from the text fields and each processed in the usual way.
They are later readily joined in a format that fits the standard format for prediction.
If the text fields are just codes, and only one can be assigned for each column, then
some software packages will directly process them without any additional prepara-
tion. Alternatively, the codes can be treated as text, and then processed as words,
where they are translated into binary, true-or-false features. This type of translation
is essential when a column can have more than a single code per example, and the
codes are not recorded in any order.

Table7.8 is a hypothetical example of electronic medical records based on an
adaption of the well-known Framingham study for evaluating cardiovascular disease
risk. The factors considered are listed in Table7.7. The treatments medications are
specified as text. The column is extracted and the dictionary of Table7.9 is used
to create a vector of the four, binary treatment variables, corresponding to the four
treatments for cholesterol. The cholesterol treatments are commingled with many
other treatments that are ignored, as are the dosages. The first 3 digits of the (ICD9)
diagnostic codes, between 410 and 450, correspond to cardiovascular disease. These
codes are standard billing codes in the USA.

The result of the translation and merger of the numerical and text fields is the
output of Table7.10, which is in a standard predictive model format.

7.6 Summary

Data for automated prediction comes from many sources. In previous chapters, dis-
cussions centered on pure text mining. Here, we expand our horizons to encompass
both text and structured numerical data. Initially, we review the ideal data repre-
sentations for prediction using either numerical or text data. We consider numerous
sources of data including databases, the web, and hybrid forms of text and numerical
data. Prototypical examples of blended numerical and text data are given. Using
the web as a source of data for prediction is examined. Among the examples pre-
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Table 7.9 Treatment options
for cholesterol

Atorvastatin

Lovastatin

Rosuvastatin

Simvastatin

sentedofweb-sourceddata are downloaded scientificpublications formatted inXML,
stock price data and related newswire headlines. Sentiment and opinion analysis are
considered with examples from online product reviews and Twitter data. Predictive
mining of electronic medical records mining is presented as an example of mixed-
data mining.

7.7 Historical and Bibliographical Remarks

Our presentation of text mining is from a predictive modeling perspective. Other
researchers emphasize information extraction from online sources of text (Feldman
and Ungar 2009). A brief discussion of sentiment analysis and some alternative
approaches to analysis is found in Melville et al. (2009). A more detailed review of
opinion mining and sentiment analysis is found in Pang and Lee (2008). Variations
of sentiment analysis have been applied to massive numbers of data sources. In
Leskovec et al. (2009), key phrases in news articles were tracked from 1.6 million
media sites and blogs. An example of the commercial use of sentiment analysis is
given in Rui et al. (2009), where comments on Twitter are used to project future
product sales. An analysis of customer reviews is given in Hu and Liu (2004). The
widely cited stock market prediction paper using Twitter is described in Bollen et al.
(2011). A major developer of software for real-time information discovery from
sources such as Twitter is http://www.dataminr.com. An example of encountering a
lucrative financial tweet is described in http://fortune.com/2015/04/01/2-4-million-
off-a-tweet. The Framingham Heart Study is a continuing long-term research effort
that follows thousands of patients over many years (D’Agostino et al. 2008).

7.8 Questions and Exercises

1. Suppose you have data in CSV format with one case per row and the class label as
the first field. Use the commands in Table7.1 to transform this into CSV format
in which the first field is a unique case identifier, the last field is the case label.

2. Write a script to extract all subjects from a set of XML documents of the type in
Fig. 7.3, assign them unique numeric identifiers and output a file in CSV format,
one line per document, containing the subject identifiers for each document.

http://www.dataminr.com
http://fortune.com/2015/04/01/2-4-million-off-a-tweet
http://fortune.com/2015/04/01/2-4-million-off-a-tweet
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3. Consider the data in Table7.3. Write a script that (a) replaces the Close field by
the average of prior values within a 2 week window (b) adds a goal field called
U p that is 1 if the current Close value is higher than the previous day’s value and
is 0 otherwise.

4. What is the purpose of the final awk command in the getpubmed script of Fig. 7.4?
5. Discuss how product reviews are different frommovie reviews. List three aspects

that make movie reviews more difficult to classify than product reviews.
6. Try the algorithm of Fig. 7.10 on some reviews downloaded from the web. How

can it be adapted to properly handle negation words such as not?
7. In Sect. 7.4, an example was given in which several fields related to IBM’s share

price were extracted from Yahoo! Finance. Modify the example to also extract
company information such as market capitalization and P/E ratio.

8. Discuss strategies for handling missing values in electronic medical records.



Chapter 8
Case Studies

Our approach to text mining is motivated by practical applications. However, the
design and development of prediction methods often take place in a controlled sci-
entific environment that simulates the real world. This is necessary for comparative
analyses and also for unraveling the pieces of the puzzle that constitute a prediction
problem. The question remains as to the appropriateness of these methods for prac-
tical use. Unlike laboratory environments, the real world is less readily controlled.
Methods may need to be combined and adapted to the task at hand. User interface
issues should be addressed. Practical considerations, such as resource limitations,
must be acknowledged.

In this chapter, we present brief case studies applying text-mining techniques to
real problems. In each study, we shall begin with a statement of the problem and then
show how it can be solved. Our description emphasizes the text-mining subsystems
in the solution. These case studies focus on certain generic problems that should
interest readers with similar concerns. The studies may provide ideas on how text-
mining techniques can be used to solve real-world problems. The solutions offered in
these studies are not the only ones possible but are good illustrations of text mining
in action.

8.1 Market Intelligence from the Web

8.1.1 The Problem

There aremany sources of news on theWeb, often taken from newswire services such
as Reuters or Associated Press, that contain valuable information about companies
and their products. Such informationmay be used, for instance, to analyze competing
products and shifts in brand image perceptions. By analyzing such information from
current articles, one may obtain real-time market intelligence. In this case study, the
focus is on detecting critical differences between the text written about a company
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and the text for its competitors. The fundamental question is “What’s different about
the stories for this company?” To this question, onemay add numerousmodifiers. For
example, what is different about the articles written about IBM in the current quarter
versus the previous quarter? What is different about the stories for IBM versus those
forMicrosoft? Or, using an objective measure and amore complicated question, how
did various news stories influence the relatively higher prices for IBM stock versus
that of Sun Microsystems?

There are several issues that need to be addressed.What articles are to be obtained?
How can they be distinguished among competitors? How can patterns be found in
the articles? How should the results be displayed so that they can be understood by
human analysts? Addressing these issues calls for a solution that integrates several
text-mining techniques.

8.1.2 Solution Overview

The overall design of a system that solves this problem is shown in Fig. 8.1. The
goal is to provide insightful market intelligence on a group of competitors. We are
looking for word patterns in articles and employing text categorization techniques
along with document-gathering methods. We can map the task into the following
components:

1. A real-time Web crawler that monitors newswires for stories about the competi-
tors. The fetched documents are cleaned and stored for further analysis.

2. A conditional document retriever that selects only those stories that meet the
specified conditions. This can be done in the form of a query that specifies the
characteristics of the document group. Typically, two groups are extracted. The
documents in the extracted groups can then be labeled.

3. Text analysis techniques that convert the stories to a numerical format.
4. Rule induction methods for finding patterns in data. Although other kinds of

categorizers might be useful, rules are more helpful to the analyst because the
word patterns corresponding to each rule can be readily examined.

Fig. 8.1 Overview of
competitive market
intelligence
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5. Presentation techniques for displaying results. These would assist the analyst
in selecting interesting word patterns from the rules. The system would then
highlight sections of the original stories that exhibit these patterns for specific
companies.

8.1.3 Methods and Procedures

The first task is assembling the articles for a designated group of competitors. This
involves the use of a crawler that operates in real time, checking at fixed sampling
intervals for the arrival of a new article for one of the competing companies. The
sampling interval could be in such units as seconds or days, depending on the crit-
icality of the requested information. To avoid repeating the same article, for each
company, an index is kept of the titles and summaries of previous articles and the
time of publication. It need not monitor a universal library, just the arrival of doc-
uments for one of these specified companies. Newswire agencies, such as Reuters,
already index stories by company stock symbols, making it sufficient to check the
library of a newswire service. These articles are posted on the Web in HTML along
with extraneous content, such as advertisements. To prepare for text mining, the
documents should be cleansed of irrelevant information and converted to a common
format such as XML that keeps the text but eliminates the chaff. The end result is a
database of documents for the competitive group in readable XML format, ready for
further processing. The database may be further adjusted to contain only documents
from the period of interest. For example, stories more than one month old may be
deleted.

The query specification is used to label the documents. Labels are not assigned
permanently but are computed based on the specifications from the analyst. We
know that we will compare two or more groups of documents, but the composition
of those groups can vary greatly depending on the satisfaction of various conditions
for computing the labels. We may compare a company to itself over different time
periods. We may compare two or more (groups of) companies over different time
periods. We may compare the same company for instances when the stock price
rose versus when it declined. The stories that meet the conditions are extracted from
the database of documents collected by the crawler. They form a single group of
documents for comparison and are assigned the same label. The process is repeated
for each group specified by the analyst.

At this point, we have a text categorization problem. The data have been separated
into different groups of labeled documents, all in XML format. A rule induction
categorizer is invoked at this stage. The result will be analogous to reversing the
usual search for documents that match a pattern using a search engine and finding
instead the most likely patterns for the group of documents. First, a dictionary of
k most frequent words is extracted from the data. For example, we might find the
150 most frequent words for each class and remove all the stopwords (the analyst
may augment these to include words besides the usual poor predictor words such
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as pronouns, articles, etc.). Each document is then vectorized with binary features
and the class label is attached. Then, we apply rule induction to solve the numerical
classification problem.

This gives a set of rules, with each rule indicating a word pattern. Although the
rules were obtained to maximize predictive performance, our objective is to review
a relatively small collection of these rules to see whether they are of interest to their
competitive position. So not all rules will be useful. To assist in finding interesting
rules, the analyst may manipulate the list of stopwords. If the rules are found to
be less than promising, some of their less satisfactory words may be added to the
stopwords and the process repeated, causing the rule induction method to search for
alternative patterns not containing the previous unsatisfactory words.

Finally, the analyst can retrieve the articles that satisfy the rules of interest, and
the system can highlight those sections that have the indicated word patterns.

8.1.4 System Deployment

A market intelligence system such as this one is primarily for decision support and
requires human interaction. The human analyst must specify and then revise the
conditions of the problem, the direction to search for solutions, and the degree of
interestingness of proposed solutions. Although we can expect that some of these
concepts might be implicit in the preparation of data, there is sufficient flexibility,
with many possibilities for the problem statement. An implementation of this system
has proven to be very successful in yielding low error rates for document indexing,
but it’s up to the analysts to determine whether insightful or interesting patterns are
found by this text-mining system.

Figure8.2 is a snapshot of a particular implementation. It shows a straightforward
comparison of news stories for IBM and Microsoft during the first two months of
2002. We see that patterns emerge relative to the retirement of the CEO of IBM and
the states’ antitrust actions against Microsoft. As an example, consider the following
excerpt from a session of market intelligence analytics:

1. Starting with stories dated after September 1, 2001, crawl the newswires and col-
lect stories for IBM, Microsoft, Dell, Compaq, and Sun. These are the designated
competitors. Sample every 15min and add any new materials. Clean and convert
to XML. Collect share price quotes at the time of stories. Add stories to current
database.

2. Specify conditions for forming groups and labels: IBM stories for December 2001
versus Sun Microsystems stories for the same period.

3. Induce rules of the form A or B, where A and B are conjuncts of no more than
two words each. Compare the patterns in rules for the groups. For IBM, data or
sign is a dominant pattern. Displaying the relevant articles highlights that these
are mostly contracts signed by IBM for data storage and recovery.
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Fig. 8.2 Snapshot comparing IBM and Microsoft newswires

4. Form new groups. This time, examine only IBM stories: stories from December
1, 2001 until December 10, 2001 versus stories for the rest of December 2001.

5. The resulting patterns are: (a) services or network; (b) york or work. Display
articles with these patterns and highlight section containing word patterns. The
first pattern appears in articles highlighting the signing of many new contracts
for IBM Global Services. The second pattern is useless because york is just the
location of New York.

6. Delete york and induce new rules. The resulting patterns include sign or systems
which is added as the second pattern. Display articles and highlight words.

7. Continue analysis with new conditions: IBMmarket capitalization increases rela-
tive to competitors versus IBMmarket capitalization decreases during December
2001.

This illustrates how the analysis can continue with new queries that arise from
analyzing the results of previous queries.
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8.2 Lightweight Document Matching for Digital Libraries

8.2.1 The Problem

In an age of distributed and pervasive computing, mobile devices with limited capac-
ity and restricted power are used to access server-based digital libraries. Whereas
retrieval based on key words is a common way to access the contents of the digital
library, we consider scenarios where users seek to retrieve documents similar to a
specific document on their mobile device. For example, a technician attending to
a customer problem on-site may prepare a complete description of a problem that
can be stored on a laptop. That document can be indexed, and similar problems and
solutions can be retrieved from a digital library at a remote server. Typically, digital
libraries come with information retrieval methods that involve a text search with an
input query or limited number of key words and produce an output list of poten-
tially relevant documents. They usually require substantial storage and computing
resources and are therefore server-based. This search engine style of retrieval may be
adapted to use case-based reasoning methods to find documents that match a given
input document, but this strategy is again less suitable for mobile devices. The prob-
lem is to devise a retrieval method that can take as input lengthy documents, give
output like a search engine (of ranked matching documents), and be able to run on
mobile devices.

8.2.2 Solution Overview

The solution involves the use of a lightweight document-matching method. This
matcher is designed to requireminimal data structures and use fast scoring algorithms
to compute efficiently even onmobile computers. It exploits the structure of the input
document—by focusing on certain parts of the document such as the title, key words,
presence of special tags, etc.—besides obtaining the most frequent words in the
document. The features extracted from the input document are matched against the
documents in the library. In order for this match to take place efficiently, an offline
preprocessor generates a set of data structures from the documents in the library.
These data structures are: (a) local dictionaries of relevant words for each document
and (b) a global dictionary of unique key words. This preprocessor is run just once
at the start (if new documents are added to the library, it can incrementally update
the data structures). These data structures are small enough to be cached in mobile
devices. The preprocessing step is shown in Fig. 8.3.

An online matching process now uses this information to score the relevance of
stored documents to an input query document. The scoring algorithm uses the count
of matched words as a base score and then assigns bonuses to words that have high
predictive value. It optionally assigns an extra bonus for words that matched from
salient substructures in adocument, such as a title, anddomain-specificdocument tags
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Fig. 8.3 Preprocessing for lightweight document matching

Fig. 8.4 Lightweight document matching

(for example, specific product or release identification associated with a document).
The online process is shown in Fig. 8.4.

8.2.3 Methods and Procedures

Let’s first look at the back-end process that generates the data structures necessary
for the matcher to work. It uses an XML-style markup language to delineate the parts
of the documents relevant to text retrieval and presentation to the end user. Two data
structures are derived from the resulting file:
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• A set of local dictionaries that contains the words that are relevant to specific
documents. Typically, eight to ten key words are assigned for each document. The
words are not unique to documents; the samewordmay appear inmany documents.

• A pooled, global dictionary containing a list of all words that are relevant to any
document. This is a unique collection of words.

The XML document contains information relevant to document retrieval that
is not contained in these two data structures, such as document titles, and possi-
bly application-specific attributes such as component identifiers. A final XML-style
extract document incorporates the contents of the local dictionaries with these addi-
tional attributes. These two data structures, a global dictionary and an extract file
representing a set of local dictionaries and additional attributes, are sufficient for the
fast document matcher to score new documents.

The front-end matching process takes an input document and outputs a ranked
list of matched documents. A special scoring function is employed to compare the
input document to the stored document representations. Words in the new document
are matched to words in the global dictionary. Words must match exactly (plurals
are mapped to singular) so that a hash table can be employed for almost immediate
lookup in the table. The words in the global dictionary point to the local dictionaries
of the stored documents.

The base score of each stored document is the number of its local keywords found
in the new document. A bonus, usually 1, is then added to the base score for every
matched word that also appears in a title or special tags (e.g., product or release
identifier). Furthermore, a bonus equal to the predictive value of a matched word is
also given. The predictive value of a word is 1/num, where num is the number of
stored documents that contain that word.

The key characteristics of the lightweight document matcher that enable it to
compute efficiently are:

1. Simplified additive scoring of positive words. The simple positive score has the
great advantage of transparency of scoring, leaving the user with a clear expla-
nation, in terms of identified key words, for the retrieval of a matched document.

2. Exact word match with synonyms and no stemming except for plurals. This is
justified since the feature space is reduced from full indexing.

3. Reduced indexing with no document frequencies. This has the greatest impact
on reducing complexity and storage requirements. The lightweight matcher uses
a reduced inverted index as the basis of all matching without any additional
computation.

How would this compare with a more “classical” document-matching system?
Usually, document matchers compute more complicated distance measures for scor-
ing the match. These would typically be more helpful with “recall” of documents
that the lightweight matcher might be giving lesser importance. Most off-the-shelf
document matchers also use full indexing, which dramatically increases the number
of references to documents, the computations for matching words, and the storage
requirements. In the general situation, a full indexmay be beneficial. But for amobile
user interested in fast retrieval, the simpler lightweight matcher is adequate.
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Fig. 8.5 An input interface for lightweight document matching

8.2.4 System Deployment

A document-matching system such as this one is most suitable for a Java-based
implementation in which the matcher is invoked from a browser. A graphical user
interface for such a deployment in a help desk application is shown in Fig. 8.5. The
response (the ranked list of matched documents) can be produced in HTML for easy
display in a browser. The data structures used by the matcher can easily be stored on
the mobile device itself and the server-based library accessed only for retrieving the
specific documents needed.

8.3 Generating Model Cases for Help Desk Applications

8.3.1 The Problem

In a help desk setting, customers submit problems or queries online (or via a call
center) to the vendor of a product and receive solutions or answers. Each interaction
can be considered a text document. Not all users of a product report unique problems
to the help desk. It can be expected that most problem reports are repeat problems,
with many users experiencing the same difficulty and receiving the same fix. Some
of the corresponding documents may be concise, almost directly decomposing into
a problem statement and solution. Others, such as those from call centers, might
be almost complete transcripts of customer and service representative discussions.
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In such situations, individual documents may include much text that does not relate
to the ultimate problem resolution. The central purpose of such documents would be
simply to maintain records of a customer’s interaction with a service representative.

As a result, we have a database of documents that may be ill-formed, containing
redundant and poorly organized documents. Our problem is to transform the database
into a concise set of summarized reports, model cases, which are more amenable to
search and problem resolution without expert intervention.

8.3.2 Solution Overview

The heart of the solution to this problem is the use of document-clustering meth-
ods. Ideally, we would like to reduce the size of this database by eliminating the
redundant documents and summarizing the ones that remain. To remove the redun-
dant documents, we will consider the use of high-dimensional clustering techniques
coupled with exemplar selection. To cleanse the remaining documents, we consider
both knowledge extraction techniques and document summarization methods. The
overall process is summarized in Fig. 8.6.

Clustering algorithms process documents in a transformed state, where the docu-
ments are represented as a collection of termsorwords, so thefirst step is transforming
the documents into vectors. The clustering process partitions the set of documents
into groups of similar documents. Clustering on its own does not reduce the num-
ber of documents. The individual documents remain the same, only now they are
grouped with similar documents. To eliminate redundancy, the final step is to select
exemplars from each cluster and to produce a set of summary documents. These
exemplars and summaries represent the model cases.

8.3.3 Methods and Procedures

To generate vectors, the structure of the documents is taken into account. Each doc-
ument has a title. It may also have key words assigned to it. The words in the title as
well as the key words are used along with them most frequent words in the document

Fig. 8.6 Overview of model
case generation
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to generate a vector for the document. A simple Boolean feature per word (to indicate
its presence or absence) is usually sufficient, although other transformations may be
desirable depending on the clustering method chosen. The main concept is to reduce
the number of overall words that are considered, which reduces the representational
and computational tasks of the clustering algorithm. Reduced indexing can be effec-
tive for these goals if performed prior to clustering. Also, the size of the documents
must be taken into consideration. It is important to normalize documents. Otherwise,
longer documents will tend to be similar by chance.

The clustering algorithm, much like any information retrieval system, works with
this vector representation of the original documents. There are many clustering algo-
rithms available. In principle, any of themcan be used. In practice, itmay be necessary
to consider whether they can handle the complexity of the number of documents and
number of features involved. Another criterion might be whether the number of
clusters is determined dynamically or is a user-specified parameter of the clustering
algorithm (in which case it would need to be tuned using validation data). Howmany
clusters should one expect to obtain? Naturally, this depends on the nature of the
documents. Because each document records a problem and a solution, and because
the problems may be similar but still have critical distinctions that result in differing
solutions, the number of clusters is typically relatively large, much larger than the
number of clusters needed for summarization of problem types alone. How can we
objectively evaluate clustering performance? Very often, the objective measure is
related to the clustering technique. For example, k-means clustering can measure
overall distance from the mean. Techniques that are based on nearest-neighbor dis-
tance, such as most information retrieval techniques, can measure distance from the
nearest neighbor or the average distance from other cluster members.

Obtaining good clusters is very important since they designate groups of similar
documents. Once clusters are obtained, exemplars can be selected from them. If
the documents in a cluster are redundant (e.g., each describes the same problem
and solution), then selecting one document from the cluster can be sufficient to
describe the cluster. But since the clustering process is imperfect and some clusters
may be large, looking at individual documents within a cluster, wemay still see some
variability. So it may be safer to select more than one exemplar document to represent
the cluster. The same measure of evaluation used for clustering can be used to find
exemplar documents for a cluster. The local dictionary of a document cluster can be
used as a virtual document that is matched to the members of the cluster. The top-k
matched documents can be considered a ranked list of exemplar documents for the
cluster.

The set of exemplars already achieves a reduction of the original database. Alter-
natively, summarizationmight be attempted. Ideally, each cluster contains documents
for the same topic. Unlike single-document summarization, summarizing documents
on a common topic is sample-based and explores common patterns across many doc-
uments. The summarization can be done over all the documents in the cluster or over
the exemplars of that cluster. The summarized documents can either be added to
the list of exemplars or replace them. At the end of this process, model cases are
obtained.
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How representative are the model cases of the original database? This depends on
the quality and clarity of the original documents, which, in turn, affects the quality of
the clusters obtained. It is best to have the original documents stripped to problem-
solution pairs before generatingmodel cases. However, one can readily envision real-
world scenarios where the documents are poorly structured. For example, consider
the following possibilities:

• The customer e-mails the problem statement, and a service representative writes
a solution. Because a problem-solution model is expected, and the discussants are
asked to compose their thoughts in writing, the resultant document tends toward
clarity and conciseness.

• The customer communicates by phone to a call center, and the service representa-
tive creates a real-time approximate transcript of their dialogue. Such documents
tend to be rambling, with extraneous text.

For the first possibility, little preparation is needed. For the second possibility,
additional effort is needed to extract critical sections. Knowledge-based models can
be very helpful. For example, we know that the problem statement is typically at
the beginning of the document and the solution is at the end. Moreover, the service
representatives can be told to prefix critical sections with key words such as action
taken. Far more helpful, and far more powerful for a self-help document, would be
for the service representative to write a one-line or two-line summary of the solution.
This takes a little extra time, reduces the time available for a single representative
to take more calls, and is not needed when the main purpose of the document is to
maintain a record of the customer’s problem. However, it does have long-term gains
in producing more useful model cases.

Summarization and exemplar selection are alternative approaches to document
reduction, and each has its advantages and disadvantages. The exemplar approach
keeps documents intact and coherent. Summarization by topic merges excerpts of
many documents and is therefore more susceptible to mistakes in the extraction of
the excerpts. However, the exemplar approach is more dependent on starting with
cleansed documents that contain the critical sections of the document, such as the
problem statement and solution. The topic summarization technique has the potential
to find those sections because they will appear in many samples while discarding
those sections that are specific to individual documents. So should one use exemplars
or do summarization? There is no single answer that will work for all help desk
applications. The best approach might well be a hybrid combination of these two
approaches based on knowledge of the documents involved.

8.3.4 System Deployment

There are at least two ways of deploying such a system. Vendors may deploy it for
internal use in which the system provides an overview of the problems that customers
are facing. In this scenario, the system serves to assistmanagers and product designers
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interested in gathering insights from help desk queries. Such an overview may be
helpful to identify trouble spots that need extra resources. For example, a computer
vendor might discover, that, for their products, printer problems comprise a large
percentage of customer complaints.

In a more ambitious deployment, model-case reports can increase the potential
for self-help by customers. In such a scenario, a customer may file problem reports
online and be automatically provided with a concise summary of the fixes that helped
solve similar problems in the past. Automated procedures cannot be expected to
perform these tasks perfectly. However, one can find real-world circumstances where
imperfect results will still provide large benefits. Typically, for even large help desk
databases, the number of model cases for the most common problems is small,
perhaps no more than a few hundred. As a result, the matching process can be very
efficient and provides a way to deliver a quick initial answer that might fix the
customer’s problem.

8.4 Assigning Topics to News Articles

8.4.1 The Problem

News services, such as Associated Press, the Wall Street Journal, Xinhua News
Service, Reuters News Service, etc., provide news stories to subscribers daily. Their
subscribers are newspapers, television and radio stations, Web sites, and private
entities. Each of the news services provides hundreds of stories every day, although
a significant number are minor variants of earlier stories. Subscriber organizations
like to have these stories tagged with index terms, drawn from a fixed set for each
source, so that stories can be routed to the correct desk or to a database so they can
more accurately be retrieved later on. This process of assigning index tags or topic
names can be accomplished by having a set of human coders read each story and
assign it one or more topic codes. Besides being expensive, such a process can be
inconsistent because no two coders would view the same story in exactly the same
way. The problem is to devise an automated method for assigning topics (from a
fixed set) to news articles.

8.4.2 Solution Overview

The solution to this problem involves text categorization. Each story is associated
with a vector of features derived from the story. The features are words that occur
in it, each feature having a numeric value based on the frequency of occurrence or a
Boolean value indicating the presence or absence of a word. Because the potential
vocabulary from a large set of news stories is a very long list, the total feature set is
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Fig. 8.7 Assigning topics to
newswire stories

huge. However, a particular news story has values for only a few of the total set of
features. The vector corresponding to the story is then passed through a set of binary
categorizers, one for each topic code. Each categorizer gives the story a positive
or negative label depending on whether the story is classified in the corresponding
topic class or not. At the end of the process, all the positive labels are collected and
the story is assigned the corresponding topics. The categorizers are obtained using
a machine-learning algorithm that processes a set of story feature vectors for which
the correct topic codes have been assigned. The overall process is summarized in
Fig. 8.7. From a text-mining perspective, the two key aspects of the solution are:
(a) feature generation; (b) use of multiple binary classifiers.

8.4.3 Methods and Procedures

Although the solution appears to be a straightforward application of text categoriza-
tion, there are many crucial questions that pertain to its use for newswire stories.
How much data should be used for training? What features are most appropriate for
newswire stories?Which classifierwould bemost suited?When should the classifiers
be updated? We will answer these questions within the context of a particular study
that utilizes a fairly large collection of stories made available by Reuters. Although a
different data context may give different answers, the methodology used for arriving
at the answers should be quite similar to the one that we outline here.

Let us first examine this Reuters sample. The collection consists of some 810,000
stories covering the Reuters newswire over a year, from August 20, 1996 to August
19, 1997. Uncompressed, it is about 2.5 gigabytes. Each story has a certain amount
of associated metadata, such as creation date, publication date, source, etc. Included
in the metadata are three codes: region codes, topic codes, and industry codes. We
focus here on the topic codes. Some of the topics, alongwith the number of associated
stories, are shown in Table8.1.
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Table 8.1 Some topics in the Reuters data

Topic Number of stories

Markets 200,190

Equity markets 48,700

Sports 35,317

Interbank markets 28,185

Annual results 23,212

Elections 11,532

Religion 2849

Unemployment 2136

Advertising, promotion 2084

Obituaries 844

For this data collection, we note that (a) there is wide variation in the frequency
of topic assignment, and (b) the topic structure is partly hierarchical. For example,
Markets is a supertopic of Interbank Markets and Equity Markets. A story classified
as Equity Markets is necessarily also classified as Markets. However, not all stories
are classified down to an end category. There are stories classified asMarkets that are
not in Interbank Markets or Equity Markets or any of the other subtopics. Although
algorithms exist to exploit hierarchies in the classification process, wewill not pursue
this avenue. Markets and Interbank Markets are merely two different topics, just like
Equity Markets and Religion. Because more than one topic can be assigned to a story,
it is simpler to view the overall classification as a collection of binary problems.

The presence of such a large collection of training data reduces the choice of
classification model to either a linear classifier or a decision tree, as both can cope
well with the amount of data at hand. A decision tree classifier has the advantage that
the tree can be reduced to a set of more or less understandable classification rules,
which allow a classification model to be manually adjusted if desired. However, let’s
see what the data have to say. For our sample, linear classifiers are consistently better
performers than single decision trees. A closer examination shows that this is a result
of the typically highly skewed distribution of stories into newswire categories. For
example, if we examine results for the three most frequent categories, three others
occurring about 1/10 as often, three more categories occurring about 1/100 as often,
and three occurring about 1/1000 as often, it is immediately clear that the best results
are in the most frequent categories. Some less frequent categories (e.g., sports) do
have very good categorization results and others, such as war and civil war, are fair,
but many of the others are quite poor. For the less frequent categories, the decision
tree gives a better result than the linear method, but even there its performance is not
very impressive. Overall, based on the data, the linear classifier is superior.

A key issue for the newswire domain with time-stamped stories is how the clas-
sifier performance would decay with time. A classification model trained with doc-
uments from a time period t1 to t2 has a certain accuracy at the present time t3 but
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presumably will have a lower accuracy at a later time tn , decreasing with increasing
n. An understanding of this decay will help determine when and how often the clas-
sifiers must be retrained. Some experimentation is necessary to assess this impact
of time for a specific sample. We shall illustrate the nature of the experimentation
involved. Since we have data for one year, we can partition them into 12 groups, each
corresponding to all stories appearing during a month. We use the twelfth month as
our test data and train classificationmodels based on each of the 11 precedingmonths,
the previous 2 months, the previous 3 months, the previous 6 months, and the pre-
ceding 11 months (i.e., all the available training data). The objective is to see how
performance varies with the different windows into the past. In doing this kind of
partition, care must be taken to ensure that there are enough data to train the clas-
sifiers. For the available data, the number of documents per month is 67,500, with
some seasonal variation. For example, the number of stories for the first month is
62,935, for the last training month 66,193, and for the test set 69,626. For these data,
the breakdown into months is justified. Looking at the performance of linear models,
we observed that the model built on month 1 data had a performance just slightly
lower than the model built on the whole collection. The implications of this in an
operational environment are significant and comforting. At least for this kind of data,
frequent model updating does not appear to be necessary if the original linear model
was built on sufficient data.

Another implication of the experiment above is the amount of data needed for
training. For the linear model, it would seem that using just one month of data
is just as good as using the full 12 months of data. In contrast, the situation for
decision tree models is not as encouraging—using more historical data provides a
clear improvement over using only one of the preceding months. Clearly, for these
data, linear classifiers are preferable unless there is some overwhelming advantage
to be gained by having a transparent rule-based solution instead.

For newswire stories, the text is usually grammatical and case information is best
retained in the tokens and features extracted. The feature sets can range from all
possible tokens, to tokens not including numbers, to tokens that had been stemmed
by an inflectional stemmer. Which is most suitable? Auxiliary experiments can be
conducted todetermine the effectiveness of different feature sets. For theReuters data,
feature set sizes ranged from almost 400,000 to 1000. We obtained quite reasonable
results with 5000 features.With more than 5000 features, the additional performance
gains were much smaller. Stemming was somewhat helpful for decision trees and
when story titles were not considered as special features. But, in general, stemming
was not worth the extra computational effort. Using titles as features was clearly
beneficial. This is not unexpected. Newswire articles tend to rely on high-information
titles to give the reader a quick feel for the topic.

An examination of the categories with poor performance sheds some light on how
performance is affected by the nature of newswire stories. For example, it appears that
recency matters less for less frequent categories. A possible explanation is that news
topics tend to occur in bursts, so training data for a particular category is localized
and may not have appeared recently. Although plausible, it would take a detailed
study to verify that this is indeed the case.
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Another issue is that although some topics seem to be inherently cohesive and it
would seem that it should be easy to build high-performance classifiers for them, this
does not always happen. As an example from the Reuters data, we looked at the rule
set generated by the decision tree classifier for the religion topic, did an analysis of
classification failures for the first 40 or so errors, and have the following comments:

• As is often the case in newswires, stories that are substantially identical are sent
over the wire numerous times. Some of these stories are summaries with several
topics. If one of these is related to religion but is only a brief mention, the classifier
will likely not find it, and because the story appears several times, what is really a
single mistake appears as multiple mistakes.

• Some stories may have religion as only a subtopic of some other theme. For
example, there are stories in the collection regarding human rights in China in
which religion is one of the rights. This story and minor variants are also repeated,
leading to multiple errors when not classed as religion by the classifier.

• In some cases, the classifier did not generate a rule that would have covered a
number of cases. For example, there is no rule regarding multiple occurrences
in a story of the word religion, which humans might expect to be reasonable.
Apparently, many stories that are not categorized as religion also contain words
typically associated with religion. In fact, only about half the occurrences in the
test set of theword religion are in stories categorized as religion. The remainder are
in a number of different categories, the most frequent being international relations
and domestic politics.

This illustrates the difficulty in predicting the performance of topic classifiers
based on human intuition. It is best to let the data speak for themselves.

In all these experiments, the three usual metrics are useful for measuring per-
formance: precision, recall, and F-measure. The F-measure is useful for simple
comparisons among alternatives. When the F-measures are comparable, the preci-
sion and recall can be examined. When examining the performance of a system that
consists of a large number of classifiers, it is common to compute the performance
of each classifier and then compute their microaverage. For example, we compute
the number of true positives, false positives, and false negatives for each of the 103
classifiers needed for the Reuters data. We sum them to get the total number of true
positives, false positives, and false negatives. Microaveraged precision, recall, and
F-measure for the overall system are computed over these totals.

We can draw several conclusions about classifying newswire stories from our
experience with the Reuters data:

• The key characteristics of newswire data are: (a) big data; (b) many overlapping,
possibly hierarchical topics; and (c) time-stamped stories.

• Even with the much larger feature space and sample sizes, the simplest methods
can be quite effective. One may not need to do any special processing to create
a dictionary. Words with numerical content do not necessarily have additional
predictive value and can possibly be ignored.
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• It is clear that the amount and recency of training data needed to build a classi-
fication model for newswire texts are dependent on the model. A linear model is
much less sensitive to the recency effect and requires less training data.

• Single decision tree or decision rule classifiers can be more accurate for less
frequent (rare) topics, especially if they take into account the highly skewed pop-
ulations of such categories.

8.4.4 System Deployment

The obvious deployment of such a system is as a filter for an incoming stream of
newswire articles. As stories arrive at the subscriber, they are automatically tagged
by the system and, depending on the topics assigned, distributed to the appropriate
people or indexed into a database. The advantage of such a deployment is timely
access by the subscriber and less resources for monitoring the incoming stream. It
may also be usefully employed as a filter for outgoing newswire articles, in which
case the distributor maintains the list of topics and the system helps deliver articles
that are labeled with more consistency than manually labeled articles.

Depending on the confidence in the system, its topic assignmentsmay bemanually
reviewed before processing. Since the story has already been assigned topics, the
manual review can be much faster than labeling the story from scratch. Alternatively,
its performance may be reviewed periodically with mechanisms in place to collect
feedback from the recipients.

Procedures need to be in place for maintenance of the system as well. The recipi-
ents can be asked to review the labeling of the stories they receive, and their feedback
can be stored as the “correct” labels for the stories. In this manner, a collection of
labeled stories can be grown. Periodically, or when performance deteriorates, such
collections can be used to retrain the classifiers in the system. Retraining may also
be necessary when new topics are introduced.

8.5 E-mail Filtering

8.5.1 The Problem

With the widespread use of e-mail for communication, the volume of e-mail that
a person receives in a day can be quite formidable. Without any tools to manage
and process the incoming messages, one could easily spend all of one’s time just
processing e-mail, and it’s easy to miss more urgent messages buried in a mass of
junk mail. Especially useful would be a tool that organizes incoming messages into
a set of folders. The tool needs to be highly configurable—each user (or even the
same user at different times) will have different sorts of folders and different kinds
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of messages. Of special interest is the class of spam messages, unsolicited messages
sent automatically by mass-marketing agencies. It would be useful if the tool could
also distinguish spam from nonspam messages. The tool will have full access to the
content of the messages as well as other characteristics (such as message date and
time, sender details, etc.). Designing this tool is the well-known problem of e-mail
filtering.

8.5.2 Solution Overview

As can be expected for an issue of such importance, many approaches to solving
this problem have been proposed. Every modern e-mail client includes some form
of e-mail filtering. We shall examine one such solution available in a version of the
open-source Mozilla e-mail client. Most other solutions have a similar structure.
Mail arrives in a special folder called the Inbox. The e-mail filter is typically applied
to messages in this folder. There are two distinct parts of this filter:

• A set of rules specified by the user. These rules are applied by the system to
messages in a folder such as Inbox and can be moved (or its attributes modified)
as directed by satisfied rules. The user specifies the rules, which rely on string-
matching expressions (e.g., regular expressions) to check the contents of amessage.
The rules also exploit the structure of themessage. For example, one candistinguish
among message fields such as sender or subject.

• A trainable classifier that identifies all the spammessages. All messages identified
as spam are put into a designated junk folder (which the user can review at leisure
to ensure that nothing important has been deleted). To train the classifier, facilities
are available for labeling messages as spam or nonspam.

The overall process of e-mail filtering in Mozilla is shown in Fig. 8.8.

Fig. 8.8 Overview of e-mail
filtering in Mozilla
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8.5.3 Methods and Procedures

The user-specified rules in Mozilla have an expressive structure that allows the user
to create powerful but intuitive rules to classify messages in a folder such as Inbox.
If a rule is satisfied, the action to be taken can be as simple as moving the message to
another folder, or it can involve changing attributes of the message (e.g., its priority).
In each rule, the user can specify atomic conditions and then specify whether a
conjunct or disjunct of these conditions should be satisfied. The atomic conditions
themselves can be focused on a specific field of the message (e.g., the sender field,
the body of the message, the subject, etc.). In this version of Mozilla, simple strings
can be specified for matching purposes. User-specified rules represent an easy and
intuitive way for users to manage their messages. For example, it’s easy to add a rule
that if the sender of a message is one’s boss, then its priority should be increased.
More commonly, messages that match a certain pattern can be simply sent to the
trash folder. An example of this is shown in Fig. 8.9.

The spam classifier in this version of Mozilla is a Bayesian model. This essen-
tially consists of a large table of estimates of the spam probabilities of words in
the message. There is a clear distinction among the impacts of different errors. A
spam message misclassified as nonspam (false negative for a spam identifier) is
a less serious error than a nonspam message identified as spam (false positive).

Fig. 8.9 A user-specified e-mail filtering rule in Mozilla
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Ideally, the spam classifier should generate zero false positive errors even at the risk
of generating more false negative errors.

To use the spam classifier, a message is tokenized and the 15 most interesting
tokens/words are found. Interestingness is measured within Mozilla by how far their
spam probability is from a neutral 0.5. Their associated probabilities are taken from
the Bayesian model, and an estimate is computed of the probability that the message
is spam. If this probability is greater than a certain threshold (in this version ofMozilla
it is 90%), the message is classified as spam; otherwise it is nonspam. Because of
the cost of tokenizing, table lookup, and probability computation, the spam classifier
is used after the user-defined rules have been applied. At this stage, hopefully there
are fewer messages to process.

The spam classifier is built using a corpus of messages in which each message is
labeled as spam or nonspam by the user. Each message is viewed as a text document,
including headers and embedded HTML, Javascript, etc. All parts of the message
that can be viewed as text are considered. The text is tokenized and tokens that are
all digits or HTML comments are ignored. Case differences are also ignored. For
each of the two categories, spam and nonspam, two large tables are computed with
the words in messages of that category, their corresponding counts, and the number
of messages. From these two tables, it is straightforward to compute a third table
of probability estimates for each word. This third table is the Bayesian model. To
compute the probability estimates, the particular formula used within Mozilla is an
empirical one and is only one of several possibilities. The crucial aspect is that it
biases the probabilities to avoid false positives as much as possible.

8.5.4 System Deployment

E-mail filters are typically deployed in e-mail clients. They can result in signifi-
cant productivity boosts in the workplace by assisting employees in managing and
processing their e-mail. Such filters can also be used to route incoming messages to
the appropriate person. For example, a customer service center, may have only one
e-mail address but several representatives.

Specifying the rules is typically done through a user interface that ensures that
the rules are syntactically correct. An interface that caters to several levels of user
expertise would be useful. Casual users may, for example, prefer to duplicate and
modify predefined rules. Intermediate users may want to define their rules from
scratch. Advanced users may want to tweak collections of rules by reordering them
or by examining historical logs of filtering behavior.

The advantages of spam identification are obvious at both the system level and the
user level. The main issue with spam identification is the constantly changing nature
of spam, which requires frequent retraining. Crucial to effective deployment is the
user interface for specifying the training cases. If it’s too cumbersome, users may
not be inclined to use it or may end up with weak classifiers trained on insufficient or
outdated data. Although theMozilla client includes a Bayesian classifier, in principle
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a rule-based classifier would be more compatible with the user-specified rules. It
would allow the user to manually tweak the generated rules and would provide the
user with transparency of the spam identification process.

8.6 Search Engines

8.6.1 The Problem

Search engines were discussed earlier in the context of information retrieval. The
problem that search engines address is a special kind of information retrieval. The
user specifies a search query that consists of relevant words. In this case-study the
problem for the search engine is to output a ranked list of Web pages that match
the user specification. The most relevant pages must have a higher rank. Part of
the problem is to design a query language that allows users to specify precisely
the pages they wish to retrieve. Obviously, the language has to be easy to use. The
queries themselves are expected to be “general purpose” (i.e., not specialized for
any specific subject or topic). They might even be complete sentences. However,
queries are expected to be composed of few words. The search engine needs to
take into consideration user privacy settings such as where the search originated
from. It also needs to take advantage of the existence of alternative proprietary but
publicly available search programs. Lastly, the search engine needs to allow the user
community tweak the search process in order to highlight the most relevant answers.

8.6.2 Solution Overview

There are many search engines, and each does things a bit differently. Here we
shall describe a solution inspired by the search engines Bing and Duckduckgo. The
search engine structure is summarized in Fig. 8.10. There are typically three aspects
to handling general queries from users:

• First, an index must be created that links words to documents. This index creation
process usually involves a Web crawler that retrieves documents from the Web.
These retrieved documents are subjected to link and text analyses to create the
inverted index that links words to documents. This index is central to the search
algorithms. Since the set of documents on theWeb is constantly changing, the index
must be maintained and updated as necessary. Other publicly available search
engines have already created their own indices and these can be considered in
parallel with the home-grown index. By allowing the user community to submit
topic-specific pages for indexing, custom indices can be generated for specific
topics of relevance to the user community.
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Fig. 8.10 Overview of search engine structure

• The front endof the search engine accepts queries from theuser. Thequery is parsed
as a set of keywords and an intent is assigned to the query based on an analysis
of the pooled or personalized web search history. A query string is constructed
based on the keywords and user privacy settings. Indices are selected based on
the intent assigned to the query. The query string is then submitted in parallel to
the chosen indices and a set of relevant documents is retrieved. These documents
are clustered into groups that can further be labeled based on the common words
within each group and the words in the search query. Finally, the documents can
be ranked based on the links.

• The ranked list can now be presented to the user as the output of the search
query. Besides this ranked list, other useful information may also be provided.
For example, the labeled clusters may be offered as a way for users to refine their
search. Also, themost authoritative documents within the clustersmay be provided
to the user as additional resources.

8.6.3 Methods and Procedures

The query language used by search engines is quite simple. Key words are provided
as a list. Ameta-language is available that allows the introduction of logical operators
(AND, OR, etc.). Users may specify whether case information should be considered
or not. The query processor also includes a spell-checker that allows it to auto-correct
typographical errors made by users. Additional advanced search tools allow the user
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to focus the search query by diverse criteria such as geographical region, domain,
date, language, location of search terms in page, etc. These serve as filters with
meta-information that can drastically reduce the search space. Ascribing the query
with an intent (from, say, a fixed set of intents) can also help focus the search on
the most relevant answers. For example, the query strings Jason Green and Green
Vegetables would have completely different intents with the former suggesting the
intent to search for a person and hence requiring higher ranks to results from people
indices.

The index is crucial for search quality (the search engine cannot find what it has
not indexed). However, as the index size grows, the search process takes more time
and more complex techniques are needed. The size of the index can be controlled
somewhat by limiting the size of the input text. When considering documents for
indexing, it may be truncated to the first 100 words, for example. The justification is
that themost relevant parts of a document are typically at the beginningof a document.
Auxiliary information about the word’s position and frequency in the document, and
also information about links, may be computed and stored during the assembly of
an index. The user community may submit pages on specific topics and these can
be indexed separately. Indices for topics matching the intent can be included in the
search process to get highly relevant results. One can also take advantage of indices
of publicly available search engines by submitting the user query to these engines in
parallel.

The inverted index allows easy retrieval of a set of documents. Ranking these
documents can be done simply using link analysis (as described in Chap. 4). Alter-
natively, the relevance of a document to the search query can be measured even more
precisely by giving higher priority to links from authoritative documents. Instead
of determining a document’s authority by its popularity among all documents, it
can be determined more precisely by examining its popularity among documents
on the same subject. This requires first forming clusters of the documents. Clusters
of results are also obtained naturally if they originate for different indices. These
clusters can also be labeled using common identifying words in a cluster and the
query key words. Once the ranks are determined, the documents can be sorted by
relevance.

A by-product of this process is that it also clusters documents into subjects that are
hierarchically organized, thereby allowing search results to be seen in context. This
context allows the user to further refine the search. Since the authoritative documents
can also be identified, they can also be provided to the user as additional resources.

8.6.4 System Deployment

Search engines are designed for retrieving pages from the World Wide Web. This is
their most widely observed form of deployment. However, by restricting the space
of documents they search, search engines can also be deployed usefully in other
settings. For example, corporate Web sites with a large number of pages can benefit

http://dx.doi.org/10.1007/978-1-4471-6750-1_4
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from a search engine that allows visitors to quickly retrieve relevant pages. Search
engines can be deployed by clients of self-help applications to search a knowledge
base of static documents.

Increasingly, search engine technology is being accessed from toolbars that inte-
grate access to the search engine databases with the browser itself. This allows the
user to perform a search from any Web page. Toolbars also allow the user to cus-
tomize the presentation of results. For example, users may want to highlight the
search key words in the retrieved documents, or they may want links to the current
document’s text.

Another modern trend is searching on mobile devices. Not only is presentation of
search results affected by the nature of the device, but also the ranking needs to be
adjusted based on information regarding where the search is being performed. For
example, a search for restaurants should give a higher rank to those near the location
of the search request.

Search engines may also be deployed such that they separate the retrieved links
into several categories. For example, some search engines sell advertisers placement
in a Sponsored links section in which highly relevant sponsored results are displayed.

More recently, the emphasis has shifted to improve the user experience by orga-
nizing results into classes that help the user efficiently refine the search query. List of
search suggestions are often provided in real-time as the query is entered. Almost all
modern search engines provide a related links section to help the user further refine
the search. The related links section allows the search engine to also be used for doc-
ument matching. Clicking on this button wouldmake the current page a search-query
string and return highly relevant documents.

Results may also be organized into search categories that directly reflect the moti-
vations for the search. This may allow the user to quickly take action based on the
search results and have a more satisfying search experience. This can be particularly
important if the search is initiated by a user on a mobile device. As an example,
Fig. 8.11 illustrates the flow of a search query in time. In the leftmost screen the user
has initiated a search with the keyword movies and the results of nearby movies are
displayed with several followup features. In the middle screen, the user has selected
a particular movie and the search engine now displays ratings and shows where it
is being screened nearby along with map information. In the rightmost screen the
user has clicked on a map and is shown not only the location of the theatre (the red
marker) where the movie is being screened but also the current user location (the
blue dot) and transit information.

The objective of searching is to answer a question and many search engines
attempt to do just that by giving instant answers. Usually this involves extracting
the desired information from relevant pages. For example, a query about flight status
can be answered directly. Answering questions can involve some computation as
well. For example, the result of a mathematical formula. The engine Wolfram-alpha
is an instance of this emerging trend. Most search engines now merge such instant
answers into their results by displaying them at the top.
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Fig. 8.11 Modern search on a mobile device

8.7 Extracting Named Entities from Documents

8.7.1 The Problem

Named entity recognition was discussed earlier as a key task in extracting informa-
tion from unstructured electronic text. This topic was a central theme in the message
understanding conferences (MUCs). It has also received attention in the form of
shared tasks in the CoNLL conferences. These shared tasks have the following
format: (a) annotated training and validation data are provided to all participants
(hence the name shared task); (b) the participants design and tune their systems;
and (c) these systems are then tested on unseen data and results are compared and
analyzed. In this case study, we examine the shared task in CoNLL-2003. The data
consist of annotated tokens for English and German text. The text is from newswire
stories. Every token is classified as one of these nine categories: O, B-ORG, B-PER,
B-LOC, B-MISC, I-ORG, I-PER, I-LOC, and I-MISC. Besides annotated data, some
dictionaries are also supplied. The goal is to build a robust named entity recogni-
tion system for such data. The methodology should be applicable to a number of
languages.

8.7.2 Solution Overview

There are many solutions proposed for this problem. The core of the one we will
describe is a robust linear classification system. It involves the use of a very large num-
ber of features. The features can be grouped into levels of linguistic sophistication.
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Fig. 8.12 Labeling tokens as named entities

The simplest ones are token-based and are available for many languages. More com-
plex ones are increasingly language-specific. Feature values are extracted from the
training data and nine linear classifiers are constructed—binary classifiers, one for
each of the nine classes. Validation data are used to assess the impact of the features,
and the ones that optimize system performance are retained.

For new text, features are extracted for each token, which is then scored by the
nine classifiers. The token is classified based on these scores. The class with the
highest score wins. After all the tokens for a sentence are classified in this manner,
some smoothing is performed to remove any inconsistent classifications of individual
tokens. The overall process is shown in Fig. 8.12.

8.7.3 Methods and Procedures

General techniques for named entity recognition have been discussed in Chap.6.
We follow the general approach outlined there and treat the problem as a sequential
token-based tagging problem. The goal is to predict the class label associated with
each token based on features extracted from the text. Since the features are crucial
for prediction, we will discuss them in more detail.

The basic linguistic features are all aligned with the tokens. Specifically, we
consider features listed in Table8.2. These features are represented using a binary
encoding scheme where each component of the feature vector corresponds to an
occurrence of a feature.

After studying many different feature combinations on the English development
set, the ones shown in Table8.3 were deemed interesting. The combinations have
been listed such that there is a distinct incremental improvement with an increasing
numerical Experiment ID. To give a rough indication of the scale of improvement,
the F-measure on an independent test set ranged from 83 to 92. More details can
be found in the references cited in Sect. 8.11. We now analyze the impact of these
combinations of features.

http://dx.doi.org/10.1007/978-1-4471-6750-1_6
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Table 8.2 Features for named entity recognition

Feature ID Feature description

A Tokens turned into all upper case in a window of ±2

B Tokens themselves in a window of ±2

C The previous two predicted tags and the conjunction of the previous tag and the
current token

D Initial cap of tokens in a window of ±2

E More elaborate word type information: initial cap, all cap, all digits, etc.

F Token prefix and token suffix (up to length four)

G POS annotation provided in the shared task

H Syntactic chunking annotation provided in the shared task

I A number of dictionaries from different sources: location, person, and
organizations

Table 8.3 Interesting feature
combinations for named
Experiment ID entity
recognition

Experiment ID Features used

1 A + C

2 B+ C

3 A + F

4 B+ C+ D

5 B+ C+ D+ E + F

6 B+C+D+ E+ F+G+H

7 B+C+D+E+F+G+H+I

There was only a small performance difference between Experiment 1 and Exper-
iment 2. This implies that tokens by themselves, whether represented as mixed-case
text or not, do not significantly affect the system performance.

Experiment 3 showed that even without case information, the performance of a
statistical named entity recognition system can be greatly enhanced with token prefix
and suffix information. Intuitively, such information allows us to build a character-
based token model that can predict whether an (unseen) English word looks like an
entity type or not. The performance of this experiment was comparable to that of the
mixed-case English text plus capitalization feature in Experiment 4.

Experiment 4 suggested that capitalization is a very useful feature for mixed-case
text and can greatly enhance the performance of a named entity recognition system.
With token prefix and suffix information that incorporates a character-based entity
model, the system performance is further enhanced in Experiment 5.

Up to Experiment 5, only very simple token-based linguistic features have been
used. Despite their simplicity, these features give very significant performance
enhancement. In addition, such features are readily available for many languages,
implying that they can be used in a language-independent statistical named entity
recognition system.
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In Experiment 6, we added part-of-speech and text-chunking information. They
only lead to a relatively small improvement. This is because most part-of-speech
information has already been captured in the capitalization and prefix/suffix features.
The chunking informationmight bemore useful, though its value is still quite limited.

By adding additional dictionaries, we observe a small but statistically significant
improvement (Experiment 7). Some of these dictionaries are provided by the shared
tasks. One may also construct dictionaries from various sources, such as certainWeb
sites that contain lists of cities, countries, US states, etc.

Clearly, the construction of extra linguistic features is open-ended. It is possi-
ble to improve system performance with additional and higher-quality dictionaries.
Although dictionaries are language-dependent, they are often fairly readily available,
and providing them does not pose a major impediment to customizing a language-
independent system.However, formore difficult cases, itmay be necessary to provide
high precision, manually developed rules to capture particular linguistic patterns.
Language-dependent features of this kind are harder to develop than dictionaries
and correspondingly pose a greater obstacle to customizing a language-independent
system. We have found that such features can appreciably improve the performance
of our system. A related idea is to combine the outputs of different systems. Fortu-
nately, our experiments indicate that special-purpose patterns may not be necessary
for quite reasonable accuracy.

The performance of a named entity recognition system is sensitive to the data
source and language. For example, German can be a more difficult language for
named entity recognition. However, features listed in this case study are useful for
these different languages as well.

8.7.4 System Deployment

A named entity recognition system can be deployed in at least two ways. The named
entities can be extracted from the input text and provided as output. The user may
decide how to use the named entities. For example, some of them may be the basis
for indexing documents in a database. Another way of deploying the system is within
a document browser. The named entities recognized by the system are annotated for
rapid perusal. For example, they might be highlighted, as in Fig. 8.13, or perhaps
color-coded.

Typically, for a different language, a different classifier would be necessary. The
methodology for obtaining the classifier would be the same: obtain training and
validation data; extract features; train the classifier; and tune the classifier using val-
idation data. The features extracted may differ somewhat across languages. For the
CoNLL-2003 data, we found that system performance was enhanced significantly
with simple local linguistic features and more sophisticated features, although help-
ful, yieldedmuch less improvement thanmight be expected. Since the simple features
are available for many languages, it suggests the possibility of setting up a language-
independent named entity recognition system quickly so that its performance is close
to a system that uses much more sophisticated, language-dependent features.
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Fig. 8.13 Screenshot of a document with highlighted named entities

8.8 Mining Social Media

8.8.1 The Problem

The increased ease of creation and exchange of user-generated content, has lead to
the emergence of social media as a dominant form of communication. Companies
like Facebook and LinkedIn are built exclusively to cater to this need. The primary
activity in social media is for entities to establish relationships with other entities
and to share information (both structured as well as unstructured) at varying levels of
disclosure. For example, in Facebook, entities are usually people or organizations and
an entity can friend other entities to establish a relationship. An entity has a profile of
semi-structured information such as its location, hobbies, interests, education history,
etc. and can share it, as well as posts (free-form unstructured messages that might
have subjective information such as likes and preferences), with its friends or the
public (everyone registered for the service). In effect, the information in a social
media service is a large graph of semi-structured and unstructured information with
varying levels of access control. The problem is to allow an entity registered with
the social media service to perform searches that take into account its own profile
and posts as well as those of its friends and the broader public. Examples of such
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searches are: (a) Find all friends in San Francisco who have said that they intend to
see Ex Machina, (b) List the vegetarian restaurants near me that are most liked by
my friends and (c) What have my friends posted about Big Bend National Park.

In contrast with web-based search, this has added an extra dimension to the search
problem—the nature of the searcher, as an entity connected with other entities, needs
to be taken into account in delivering search results. Another major difference is that
the granularity of the search is social media is more fine-grained at the level of
individual posts. The primary motivation behind mining social media for answers
is that a person is likely to have a higher confidence (and hence find them more
relevant) since they are based on their own social network.

8.8.2 Solution Overview

The solution we describe here is somewhat inspired by Facebook’s Graph Search.
Fig. 8.14 gives an overview of the different components involved. The backend of
the search is an entity graph that is implemented, due to differing requirements for
ranking and also due to the sheer size of the graph, as a set of inverted indices, one
for each type of entity. The graph is dynamic and the indices grow with user activity.
Efficient methods for index maintenance are used to keep them updated in real-time.
The front-end is a Natural Language Interface that accepts queries from the user
and, with feedback from a ranker, suggests precise refinements for the user based
on an analysis of the query written so far and the top ranking entities that might
complete the query. Once the user has completed the query, possibly by selecting
from the suggestions, it is passed to the top-level aggregator that rewrites the query

Fig. 8.14 Graph Search for mining social media
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to incorporate social and contextual information of the searcher. Once a result set is
obtained, it is re-ranked to improve the user experience by including a diverse set of
results, not just the top-ranked ones.

8.8.3 Methods and Procedures

The central data repository is the Entity Graph Structure in which the nodes are
entities, which could be phrases as well as words and are usually nouns, and edges are
relationships between the nodes, and are typically verbs. Both nodes and edges have
metadata associated with them. Nodes could be users, pages, postings, photos, etc.
Edges between nodes might represent social information such as relationships (such
as friend or like) or might represent general information (such as author of a book.)
Transforming free text into entities is done by language-processing techniques, such
as those described in Chap.2, along with ontologies and conceptual frameworks such
as those in Wikipedia and Wordnet. Entity extraction methods discussed in Sect. 8.7
may also be used. To efficiently use this graph in the search process, an inverted
index is created. The dynamic nature of social media means that the Entity Graph
changes very rapidly and specialized engineering techniques are needed to keep it
and the inverted index updated and current.

Given a query, highly relevant results can be delivered by conducting the search
based on relationships between the entities. To guide the search through the edges,
it is helpful to allow the query to be posed in natural language. This allows easy
specification of not only the entity keywords, but also themost relevant relationships.
Query rewriting can be performed to get a specific version that is biased socially and
contextually for the searcher. Search can then proceed for the entity types in parallel,
each sub-search process returning a fixed number of results. The top-level aggregator
can then score the different results and order them by rank.

Unlike the situation with web-search, the relevance ranking of results in social
media search is done in amore dynamic fashion. This is mostly due to the fact that the
query attributes change frequently. Locality and time of search can significantly affect
the relevance of results. Usually the relevance of a result is computed independent of
the relevance of other results. It is typically done for each result by computing a set
of ranking features and combining them with a ranking model. Something simple,
like a weighted average, can be used to obtain an overall rank for a result. The main
problem with this is that the overall set of results can be rather uniform and not of
much use to the searcher. So usually an additional step of scoring can be performed
to return an interesting subset of the results, not necessarily the highest scoring ones.

http://dx.doi.org/10.1007/978-1-4471-6750-1_2
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8.8.4 System Deployment

Graph Search can be worked into the social media interface such that it is the main
driver of user engagement with the service. Canned searches can be automatically
performed based on trigger actions of the user. For example, when a user performs
a check-in (i.e. publicly declare their current location) at a restaurant, they can be
immediately shown the results of a search of which friends have eaten at the restau-
rant in the past and their menu recommendations. By exposing an API (Application
Programmer Interface) to the graph-search system, third-party applications could be
enabled. These applications would perform searches to enhance the user experience.
For example, a bookstore application might search for all users in the vicinity at a
specific time, analyzes their posts to estimate their interest in specific books, respon-
siveness to past offers, etc. and offer each user a personalized in-store discount for
purchases made in the next half-hour.

The most prominent form of Facebook graph search is restricted to a person’s
own postings and of their friends and followers. The search results look similar
to a generic search with words matching the query highlighted within the listing
of each displayed post. Unlike a standard search over web documents, the system
must examine an auxiliary structure, the graph of friends, and restrict the search to
those related members of the friendship circle and their posts. It may also recognize
recordings of “likes” of posts and user profile information.

An important issue in social media search is ensuring that the result set complies
with individual privacy preferences. For instance, while the search engine has access
to all of the attribute data of the users, when assembling a result set for a query
involving age, it must take care to remove anyone who wished to keep age private.
The compliance process can be quite dynamic. A person may wish to keep certain
information accessible to their friends alone. So if such information were to appear
in the result set, the search engine must check the relationship of the searcher and
exclude the person from the result set if necessary. Still, a personmay have no control
over incidental data—data posted about them by other people. A few years ago a
blogger used Facebook’s Graph Search to compile a list of family members of people
who live in China and like Falun Gong.

8.9 Customized Newspapers

8.9.1 The Problem

The Web has an abundance of news sources. These sources often update in real time
with breaking news. Similar events are sometimes reported from different perspec-
tives. An individual tapping into these sources takes on an editorial role in deciding
what is relevant or useful. With experience, a person may get better at figuring out
which sites to access forwhich stories. Still, considerable time is spent simply visiting
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Fig. 8.15 Automating
customized news

different sites and sifting through repetitive material. The problem is to devise a sys-
tem that fully automates this editorial process, composing a customized newspaper
from multiple news sources.

8.9.2 Solution Overview

Anoverall solution is shown inFig. 8.15,which summarizes the different components
involved. The key components of the solution are:

• A Web crawler that visits news Web sites and retrieves documents of interest.
• A categorizer that classifies articles into several key topics known in advance. For
instance, the categories may be entertainment, government, finance, sports, and
international.

• A document clusterer that clusters the documents within each category based on
their similarity with each other. It may also take into account other attributes of
the documents such as time, source, labels, etc.

• An exemplar selector that selects key articles within each category and selects
other relevant articles on the same subtopics.

• A layout program that uses the relative importance of the various documents and
categories to decide on the overall layout of the newspaper.

Note that several variations of this solution are possible. For example, a more
sophisticated version might involve merging the articles together. Another version
might involve creating new headlines.

8.9.3 Methods and Procedures

The first step is getting the news articles. There are many news Web sites that can be
visited, and articles can be retrieved using a Web crawler. One issue in this step is
cleaning up the articles and removing extra HTML links, Javascript, advertisement
links, etc.
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Articles are then vectorized. The vectors are the basis for many of the subsequent
steps. For vectorization, it is usually sufficient to use around a few hundred terms
(with the highest tf-idf weights, for example) to describe the articles. Stopwords
may be eliminated, and synonyms and spelling errors should be taken into account.
When documents vary greatly in length, normalization provides a common basis
for comparison and prevents inappropriately high similarity measures for longer
documents.

Once document vectors are obtained, they can be categorized and clustered.
Besides the usual terms that capture document content, additional information may
be used such as the time stamp of the document. Instead of comparing document
vectors directly, it’s preferable to work with topic vectors instead. Topic vectors can
be created in advance for the usual news categories (such as World, Sci/Tech, US,
Sports, Business, etc.), and comparisons with such topic vectors can assist in cat-
egorizing and clustering. For instance, one can create a topic affinity vector, that
measures the similarity of a document vector to the various topic vectors. Then,
instead of comparing two document vectors directly, one can compare their topic
affinity vectors instead. The more similar these vectors, the more likely that they are
of the same topic.

How are topic vectors created in the first place? They can be created from Web
directories, which consist of articles categorized into various topics. Using the terms
from all the documents for a topic, a topic vector can be generated.

This requires that topics be known beforehand. Typically, there are several key
topics of interest, such as entertainment, government, finance, and sports. Names of
new topics can also be generated by examining the words in a cluster, ranking them
by weight, and taking the top few words as descriptive of the articles in that cluster.

Documents for each category can be filtered for relevance and user preferences.
Those deemed unsuitable can be discarded. When many documents are similar, a
few may be selected as exemplars. In this stage, the document sources may also be
taken into consideration. An article from one news source may be given a higher
weight than that from another source.

Once the articles are selected, they need to be presented inWeb pages. Automated
layout can be quite tricky if done from scratch. But default templates may be used as
a starting point and the layout modified based on the importance and newsworthiness
of the articles. Some articlesmay have pictures attached to them, and these too need to
be considered by the layout algorithm. Unlike the layout on fixed-size pages, layout
for Web pages is more flexible, with the primary concern being the hierarchical
organization of links to the articles.

8.9.4 System Deployment

Automated editing allows for huge savings in manpower and increased responsive-
ness to evolving news. If a wide range of news sources is considered, the system
allows the bringing together of sharply different perspectives on the same event.
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Customized newspapers can be deployed in very diverse scenarios by including
user preferences. In the simplest form, users can specify news categories of interest.
For example, a user may be interested only in sports and entertainment news. Or
one may customize a regional news section based on the region of interest. More
complex personalizations may affect the delivery of the news itself. For example, one
may specify e-mail delivery of hourly news updates on certain topics. At an extreme,
customized news may take the form of a market intelligence report in which articles
about specific companies at the time of certain events (such as sharp stock price
changes) are collected together.

8.10 Summary

In this chapter case studies for text-mining applications are presented.Each case study
is examined for the following characteristics: (a) problem description, (b) solution
overview, (c) methods and procedures, and (d) system deployment. The following
applications are reviewed: market intelligence from the web, lightweight document
matching for digital libraries, generating model cases for help desk applications,
assigning topics to news articles, e-mail filtering, search engines, extracting named
entities from documents, mining social media and customized newspapers.

8.11 Historical and Bibliographical Remarks

As with most data-mining case studies, key details of deployed systems are closely
held trade secrets. The systems for which more details are known have roots in
published work from universities or research labs, but the crucial reworkings for
successful deployment often are not made available. Not many companies are inter-
ested in helping their competitors match their system’s performance!

A market intelligence system is described in Weiss and Verma (2002). An eval-
uation of the lightweight document-matching algorithm is provided in Weiss et al.
(2000b). Generating model cases by document clustering is discussed in Weiss et
al. (2000a). Details of text categorization experiments with the Reuters data can be
found in Damerau et al. (2004). The version of e-mail filtering described is from
the open-source Mozilla v1.3; the latest version can usually be obtained from http://
www.mozilla.org. Its spam classifier is based on an algorithm by Graham (2003)
(see also http://www.paulgraham.com). Most well-known search engines are based
on proprietary techniques. An overview of the CoNLL-2003 shared task, with details
of performance results, is available in Sang andDeMeulder (2003). A detailed analy-
sis of the impact of features can be found in Zhang and Johnson (2003). Techniques
for mining social media are comprehensively surveyed in Russell (2013).

http://www.mozilla.org
http://www.mozilla.org
http://www.paulgraham.com
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Customized newspapers based on user preferences have been around for quite
a while. Almost all online newspapers allow some degree of customization. The
simplest instance of this is where the weather report can be for a user-specified
city. Mostly though, the customizations are such that they restrict or selectively
show parts of the full newspaper. The content and layout are still mostly done by
humans. A system that is organized somewhat along the lines of our case study
is Newsblaster, developed at Columbia University (McKeown et al. 2002). A view
of Newsblaster in action can be found at http://newsblaster.cs.columbia.edu at the
time of writing. Google News (http://news.google.com) is an incarnation of a fully
automated newspaper in which the editing and news selection are done by programs.
It uses proprietary procedures to compose a meta-newspaper for a fixed number of
topics with exemplar links chosen as key articles and secondary links to other articles
on the same topic.

8.12 Questions and Exercises

1. What kind of rule-based system would be most appropriate for the market intel-
ligence application?

2. Why bother with lightweight document matching when search can be performed
from smartphones?

3. For classifying news articles, how might the class hierarchy be exploited in the
classification process?

4. How might one create an automated newspaper with a bias? For example, sup-
pose you want your newspaper to cover events from a conservative (right-wing)
viewpoint.

http://newsblaster.cs.columbia.edu
http://news.google.com


Chapter 9
Emerging Directions

Our principal objective is predictive text mining. The wealth of research literature
for text mining encompasses a much wider range of topics than is presented here. At
the same time, the research literature deals with each of these topics in great depth,
describingmany alternatives to the approaches that we have selected. Our description
is not a comprehensive review of the field.We have used our judgment in selecting the
basic areas of interest and the fundamental concepts that can lead to practical results.
For example, thousands of papers have been written on classification methods. We
picked our favorites for text mining.

Perusing the research literature, one sees a number of topics that we have not
covered. Many of these may be quite interesting and of practical importance, but
they are not special to text mining. They are general issues of data mining. Other
topics are clearly related to text mining but are only weakly related to prediction.

We don’t want to ignore these other topics. Yet, we will not cover them promi-
nently because of the aforementioned rationale. As before, we make our selections
of important topics. Although text mining is far from a mature field, some new areas
of application are emerging. Several years from now, techniques for applying these
concepts will be routine. For others, progress may be made, but they will remain on
a research agenda.

9.1 Summarization

Now that documents are in digital form, they are amenable to transformations that
are not expected for paper documents. You are presented with a lengthy document
or a collection of documents on the same topic. Instead of reading these documents,
you might request a summary. You may eventually read the full version. First, you
want to see the short version. How long is the short version? Surprisingly, there
are techniques that produce customized summarizations. You specify the size, for
example 10% of the originals, and the programs will comply.

© Springer-Verlag London 2015
S.M. Weiss et al., Fundamentals of Predictive Text Mining,
Texts in Computer Science, DOI 10.1007/978-1-4471-6750-1_9
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A principal technical approach to summarization is closely aligned with clus-
tering. A cluster consists of similar documents. The clusters are considered classes
of documents having the same topic. We could envision several situations where a
summary might be useful:

• single document
• multiple documents with the same topic
• an automatically assembled cluster of documents.

The common theme is that one or more documents are presented, and from these
documents a summary is produced. Don’t let your imagination run wild thinking that
a programmust rewrite the originals. Our summary will be word-for-word sentences
extracted from the given documents. The task is one of selecting the right sentences.
This can be done by invoking a process that we described in Chaps. 5 and 7 for
summarizing the results in a cluster. Figure9.1 describes that situation, where a
cluster is summarized by one (or more) of its constituent documents. The extract is
selected to be representative of the cluster, a summary of the shared topic.

Figure9.2 illustrates the extended task of producing a summary by selecting sen-
tences from the given documents. Instead of selecting a single representative doc-
ument, the summarizing program extracts sentences from the documents, merging
them into a single summary.

How did we previously select the exemplar for a clustering procedure? Let’s
assume we used k-means. We then have a mathematical summary of the cluster,
expressed in terms of the means, such as the tf-idf of each word in the dictionary.
One simple procedure is to select the document that is most similar to the virtual
document represented by the mean vector. We can use a similar procedure for select-
ing sentence extracts for summarization. Figure9.3 gives the steps for one prominent
summarization method. Using similarity measures relative to the mean vector, sen-
tences are added to the summary. These sentences are not modified and maintain

Fig. 9.1 Summarization by
exemplar selection

Fig. 9.2 Summarization by
merging documents

http://dx.doi.org/10.1007/978-1-4471-6750-1_5
http://dx.doi.org/10.1007/978-1-4471-6750-1_7
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Fig. 9.3 A summarization algorithm

their relative positions within the original document. Multiple documents also keep
their order relative to their time stamp, with extracts from the earliest time stamp
appearing first. Redundancy is checked by pairwise similarity scoring. Instead of a
pure similarity score, a weighted score that includes other factors may be used. These
include the position of the sentence in the document and the length of the sentence.
For example, sentences appearing at the beginning of the document may be weighted
higher than those in the middle. Given a percentage threshold, sentences are added
until the threshold is exceeded.

This procedure can be applied to multiple documents on a single topic or just
one long document. The resulting summary is a set of sentences extracted from the
full documents. Originally, summarization methods were developed using a fairly
detailed linguistic analysis. But once again, we see that automated methods using
procedures evolving from clustering and classification can be effective in producing a
satisfactory result while circumventing any need for a deep linguistic understanding
of text.

A related summarization method extracts sentences using clustering. The idea
can be described as follows. We partition sentences from a document (or multiple
documents) into a number of clusters such that sentences within each cluster are
similar. Then we create the mean vector for each cluster. Similar to the procedure in
Fig. 9.3, one ormore sentences can be selected that are closest to themean vector from
each cluster as its representative sentences. The selected representative sentences
from the clusters are displayed as the desired summarization.

In addition to the methods above, topic sentences can also be selected based on
some linguistic heuristics. A number of ideas have been proposed in the literature. For
example, it has been noticed that sentences that occur in a title, or either very early or
very late in a document and its paragraphs, tend to carrymuchmore information about
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the main topics. Therefore we can select sentences simply based on their positions
in an article. Another idea is to use linguistic cue phrases such as in conclusion, the
most important, or the purpose of the article, which often indicate important topic
sentences.

Although linguistic heuristics such as those described above are helpful for sen-
tence extraction, it is often difficult to determine the relative importance of sentences
that are selected basedondifferent heuristics. In order to facilitate a consistent ranking
of sentences, an emerging trend in topic sentence extraction is to employ machine-
learningmethods. For example, trainable classifiers have been used to rank sentences
based on features such as cue phrase, location, sentence length, word frequency and
title, etc. Given a document, we may select a pool of top-ranked sentences based
on outputs from the resulting classifier. In order to obtain a more concise summary,
an algorithm such as the one in Fig. 9.3 can be employed to eliminate redundant
sentences from the pool.

9.2 Active Learning

Prediction methods work with labeled data. We characterized clustering as a way to
assign class labels to unlabeled sample data. Predictionmethods work best with well-
formed goals, and that implies careful problem design with labels clearly expressed
and naturally assigned.You define the problem and the computer solves it. Otherwise,
you may be asking the computer to define the problem, too.

Another perspective is to look at labels as an expense. We can exert an effort to
obtain them, but we need not lead a spendthrift lifestyle. If we need labels, we will
“purchase” them. If we have a predictor that is performing perfectly, why go out and
get additional labeled data?

Active learning attempts to reduce the number of labeled documents needed for
training. The assumption is that labels are expensive, and documents will arrive
unlabeled. We can ask someone to label the incoming document, but that will entail
an expense. Figure9.4 illustrates this view of labeling and its effect on the learning
process.

How is the decision made to request a label? That is easy for prediction methods
that assign a probability to their decisions. They will make a request for a label when
they are unsure about their decision. If they have high confidence, they discard the
new document. The process does not have to take place in real time. One can collect
a number of documents that cannot be classified with confidence, and a request is
later made to label them. The decision to request a label is made as follows for a new
unlabeled document:

1. Classify the document using the current decision model. Let C be the assigned
category.

2. If Pr(C) < threshold, request a label; otherwise, ignore the document.
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Fig. 9.4 Active learning and
labeling

The procedure above can be applied iteratively. Instead of using a predetermined
threshold, in practice one can set it so that a small number of least confidently
predicted documents are returned. After adding these newly labeled data into the
training set, we retrain the classifier. We can then repeat the procedure until a desired
accuracy is attained. One potential issue with this method is that similar data are
likely to be selected (or ignored) simultaneously. The problem can be alleviated by
randomizing the data selection process. For example, at each iteration, we may use
a relatively small pool of randomly selected unlabeled data.

Even if the learning algorithm does not assign probability estimates to its deci-
sions, the active-learning procedure can still be applied as long as we can estimate
how confident its decisions are. For example, if the decision of a learning method is
based on voting many classifiers, then the degree of agreement among the classifiers
can be regarded as a measure of confidence.

Experimenting with text categorization and with some numerical data-mining
applications, researchers have found that active learning can often drastically reduce
their overall sample size while achieving results comparable to training on the full
set of labeled documents.

9.3 Learning with Unlabeled Data

Unlabeled documents can be useful for prediction even when labels will never be
assigned. For example, global dictionary compilations and tf-idf computations do not
need labeled data. Some predictionmethodsmay use pooled covariancematrices that
can be computed without labels. A general idea is to find features in unlabeled data.
Wemay discover patterns from unlabeled data and use such patterns as features input
to the learning algorithm. If such patterns exist, then unlabeled data can help.

A more open question is whether the assignment of labels can be simulated by
programs to improve predictive results. One proposal, called cotraining, is based on
learning and applying two different classifiers (or one classifier on two independent
sets of features) and computing their confidence measures. The procedure is related
to active learning. However, at each iteration, instead of choosing the most uncertain
data to be labeledby ahuman, one selects data that canbe labeled reliably byoneof the
classifiers (according to the confidence measures) and simply use the corresponding
labels in the next iteration as if they were the true labels. This method only works
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if we can indeed bootstrap classifiers this way without human intervention. The
theoretical analysis of this method is based on the assumption that labels guessed
by the algorithm are correct. However, the potential danger is that more and more
incorrectly labeled data are included in the training data, which reduce the quality of
the underlying classifiers. Promising results have been reported for some problems
with small numbers of labeled data to start with. These experiments were performed
with labeled data and while hiding some of the labels.

Some researchers have also reported improved results by using the following
sequence of steps:

1. Train from labeled data.
2. Apply the resulting classifier to unlabeled data.
3. Add the unlabeled data and the program-assigned labels to the training sample

and retrain.

This method also has the danger of training a classifier based on incorrectly labeled
data. Although some experiments show promising results, the circumstances of
improved results are not yet fully understood.

9.4 Different Ways of Collecting Samples

Predictive methods are implemented in programs that process examples of prior
experience. The examples are assembled into a single sample and processed in one
big batch. Let’s examine alternative ways of collecting samples and processing data
in smaller pieces.

9.4.1 Ensembles and Voting Methods

Instead of being combined in one sample, examples could be collected from different
samples. We have already noted that the fundamental approach to sampling for
prediction assumes that documents are i.i.d., independent and identically distributed.
We know documents change over time, but within a narrow window, the population
may be relatively stationary. We might take a sample periodically, and instead of
retraining a classifier, we can induce a new one from the new sample. Thus we
would have a different classifier for each sample, and we expect that the samples are
from the same population. This simplifies our learning task, but how do we make
decisions from so many classifiers? We can apply each of the classifiers to a new
document and then tabulate their votes. Figure9.5 illustrates the overall process. In
the simplest form, all votes are equal, and the class with the most votes wins the
election. More complex versions may use weighted voting.

Numerous sampling schemes have been developed to simulate multiple samples
from just a single sample. This is done by resampling or weighting the examples in
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Fig. 9.5 Voting predictors from multiple samples

the training data. Some techniques, such as bagging, randomly draw examples with
replacement (i.e., repeats) from a single sample. Another technique, boosting, is a
sampling approach with a memory. It samples the examples that are misclassified
with a higher weight than the correctly classified examples. All these variations result
in multiple classifiers, which are voted, either equally or by weighted voting.

The results for these methods on benchmark data are among the best. Yet, for
practical applications, these methods are less interesting than alternatives. The linear
methods described in Chap.3 also achieve excellent results with a single straightfor-
ward solution. The voting methods can take a long time to train and apply, and their
results are not easy to understand. On the positive side, they may find classifiers that
cover the rare instances that are overlooked by single-sample methods. Reading and
comprehending text is a task we all perform. We are reluctant to transform this effort
into something that is less well-understood, especially when other approaches are
equal to the task.

Fig. 9.6 Voting predictors from multiple models

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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An alternative to training on multiple samples using the same learning method is
to train diverse models and then combine their predictions. This stacking process is
shown in Fig. 9.6. For example, one could combine the results of linear models, trees
and nearest neighbors. This approach typically involves relatively few models and
could be considered a form of mechanical collaboration. Different variations on this
theme of combining diverse sources of opinion have proven effective. For example,
several teams may work on the same problem using different approaches, and the
best results may be achieved when their independent predictions are later combined.
Predictions from alternative models may be combined by linear or voting methods,
or by tuning and empirical testing.

9.4.2 Online Learning

A sample consists of one or more (usually many) examples. For real-time learning,
we consider a more elemental view of data. Instead of learning from a sample,
a program learns from each example as it arrives. Figure9.7 illustrates the online-
learning viewof data. A small number of labeled documents are collected in a sample,
and a classifier is induced from the data. As new labeled data arrive, the classifier
immediately updates itself to reflect the new information.

How hard is it to update a prediction model? For some methods, the task is trivial.
For example, the predictor that uses the class mean vector needs minor computations
for the newmeans. The naive Bayes model just needs to update its class probabilities.
Many parametric methods have straightforward adjustments. Other methods, such
as decision rule induction, were designed for batch processing and can be highly
variable when slight changes are made.

The environment for real-time learning can change from that described in Fig. 9.7.
We may still want to update every time a new document arrives. If our documents
are time-sensitive, it may be desirable to discard older documents, too. The situation
may share many of the characteristics of a time series, where we process documents
arriving within a fixed window of time.

Online-learning methods can also be used to train linear classifiers. As we have
mentioned before, linear classifiers are well-suited for text-mining applications since

Fig. 9.7 Online learning
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they can take advantage of large numbers of features. A popular online method for
linear classification is the simple and elegant perceptron algorithm. This method
is mistake-driven in that it updates the weight vector when the prediction with the
current weight makes a mistake.

Using the notation in Chap. 3, we assume that the weight vector is w and the i th
training data are (xi , yi ), where xi is the feature vector and yi is a binary label
with value ±1. We initialize the algorithm with w = 0. Then it goes through the
data from i = 1, 2, . . . . After examining the i th data, the algorithm does nothing
if w · xi yi > 0 (which means that it has made a correct prediction). However, if
w · xi yi ≤ 0 (that is, the current weight vector has made a mistake on the i th data),
then it updates the weight vector w simply as w → w + xi yi .

One can show that if the training data are linearly separable (that is, there exists a
weight vectorw∗ such thatw∗ · xi yi > 0 for all i), then by going through the training
data repeatedly, the perceptron algorithm will find a weight vector that separates the
data in a finite number of steps.

Despite its simplicity, the perceptron algorithm works quite well for many prob-
lems. However, its performance is usually lower than more sophisticated linear scor-
ing methods such as the one we described in Chap.3. Practitioners also find that
instead of using the final weight vector when the algorithm is stopped, one often
achieves better performance by averaging weight vectors obtained during all steps
of the algorithm.

9.4.3 Deep Learning

Statistical learning originated before computers and necessarily emphasized small
samples. Even after the advent of the computer, many of the earlier learning methods
have remained effective. The single-sample, single learningmethod, single-computer
perspective has been dominant. Because the nature of computing and data are chang-
ing, approaches to learning from data are evolving too. Relatively inexpensive multi-
processor computing, capable of running almost unlimited instances, are accessible
using cloud-based services from vendors like Amazon, Google and Microsoft. No
longer are data constrained by small samples; we live in an age of big data. These
events do not guarantee better predictive results, but the potential exists for new
avenues of exploration in learning and analysis.

Havingmultiplemachines to process the data allows us to trymany different learn-
ing methods and to vary the parameters fed to these methods. Unlimited machines
can lead to many learning variations that would otherwise not be tried, possibly pro-
ducing stronger results. In an earlier era, we were restricted by time and deadlines to
choosing default methods and their default variations. The more methods we added,
the more time it would take. With many more processors, it’s more like the Olympics
with many events ongoing independently.

Big data may also have a dramatic effect on our approach to machine learning.
Smaller samples lead to lots of secondary problems. It’s difficult to provide for

http://dx.doi.org/10.1007/978-1-4471-6750-1_3
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Fig. 9.8 Single layer neural
network

adequate training and testing. Many times the data may be used for tasks that are
better performed independently. Learning the proper complexity of amodel, selecting
the best parameters for a model, testing performance are difficult in the context of a
single, moderately-sized sample. It’s actually simpler to use multiple large samples,
where various characteristics of performance are measured fairly and with less risk
of overfitting to a single set of data.

A key advantage of big data is that more complex models can be tried. These were
not practical in an earlier era of limited data and limited computing resources. It was
very unlikely that we would have the data to drive the increased complexity. Now
those issues are removed, and the potential is present to examine these higher com-
plexity models. The higher-complexity learning models are where superior results
have been achieved by neural networks. That’s where the mantra of “deep learning”
was promulgated.

The term “deep learning” refers to a specific type of higher complexity models:
those models are neural networks with many layers of hidden units. Figure9.8 dis-
plays the classical single hidden layer network, which is theoretically capable of
learning the same concepts as networks with additional hidden layers. Figure9.9
shows an example of a neural network with many layers that supports deep learning.

Originally, it was thought that extra complexity would not yield enhanced results,
yet would have the usual deficiencies requiring greater volumes of data. These techni-
cal concerns have faded and neural networks trainedwith deep learning have achieved
improved results on benchmarks for sensory applications like image and speech
recognition.
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Fig. 9.9 Deep neural network

Intuitively, wemight rationalize the extra layers of hidden units in terms of human
cognition, where additional layers of hidden units are abstractions of simpler con-
cepts. Byway of analogy, a physicianmight reason that several patient-symptoms are
a syndrome and then work from there to reach a diagnosis. While empirical results
have been exceptional, the human reasoning analogyhas not always held in computer-
based mathematical processing. Researchers, have produced numerous examples of
images that have been minimally altered, where the human readily recognizes the
image, yet the neural net reclassifies to something else. Similarly, images unrecog-
nizable to a human are recognized by the networks. Moreover, the anthropomorphic
abstraction idea is not completely supported because it can be shown that the sources
of information for a hidden unit are global rather than localized to a subset of related
inputs. These results give direction to additional research. Yet, the major message
remains that additional complexity and model variations can be supported by greater
data, and we now have the resources to utilize them. Adding complexity to a model
may in practice yield improved results, and the cost is minimal. For example, instead
of reasoning (not just with neural nets, but with any learning model) directly from
words, one might add an abstraction that could be more efficient in reasoning. One
might add a concept of “anger” that may be linked to a specific set of works and
phrases. Along this line of thinking, there is a vast amount of work on embedding
of words into numerical vectors, so that similar words are mapped to vectors that
are similar. With such a representation, we could group similar words together by
clustering their numerical vectors.
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9.4.4 Cost-Sensitive Learning

For binary classification, two types of errors occur: false positives and false negatives.
Some learningmethods treat these errors equally and try tominimize the overall error
rate. Text-mining applications are very sensitive to the tradeoff of these two errors
relative to predicting the positive class. Measures of precision and recall capture the
distinction between the two types of errors. Typically, a minimum level of precision
is required. Increasing one of these measures comes at the expense of the other. The
natural way to move the direction of these measures is to assign a fixed cost to errors.
Increasing the cost of error for missing a document belonging to the positive class
will increase recall. Similarly, increasing the cost of an error for a negative-class
document may increase precision. Increasing the cost of error for missing positive
documents is equivalent to increasing the number of examples for that class. Most
text-mining programs have some variable that can be varied to produce different
levels of precision and recall. It’s up to the application expert to decide whether
the overall results are satisfactory and to find the best compromise in precision and
recall.

Varying the costs of error can sometimes improve overall predictive accuracy.
Learning programs do not employ optimal algorithms, and tuning learning parame-
ters can have a beneficial effect. Increasing the implied number of examples for the
positive class by increasing the cost of errors of omission might force the learning
program to be more ambitious in pursuing rules for its class. For the Reuters bench-
mark, our rule induction program has better accuracy by about 1% when the initial
cost of error is doubled for all indexed topics.

Almost all applications of predictive text-mining methods have been for classi-
fication. One can readily envision applications where the prediction is measured in
numerical terms such as gains or losses. For example, one could attempt to predict
the net gain in stock prices based on sampling newswires and other documents. Pre-
dicting the gain or loss for an individual stock is a regression application. A sample
of newswires for companies of interest would be collected along with the change in
their stock price for some fixed period following the release of the newswire. Using
text combined with a time-sequenced measurement, a learning method would try to
find patterns that identify an upcoming change in a stock price.

Measures more complex than cost of errors might be used. Not only might errors
be penalized, but positive decisions might be reinforced. We could assign gains and
losses to each decision. The actual gain or loss depends on whether the decision is
correct, and the magnitude of the profit or loss is not necessarily uniform for each
example.

9.4.5 Unbalanced Samples and Rare Events

Many learning methods tend to be timid about learning rare events. In that situation,
the positive class is overwhelmed by the sheer number of negative events. Unless
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the two classes can be readily distinguished by one or two key words, the method
may give up and determine that it’s best not to predict that class. If this occurs, one
should try to rebalance the class examples for training. A typical rebalance is an equal
number of examples in each class, where all positive class examples are used along
with a random selection of the negative examples. Testing can be done on new cases
without any correction for rare events. This rebalancing has much in common with
the cost adjustments described in the previous section. It may be important to detect
rare events, even at the expense of increased error on the negative side. Moreover,
given the suboptimality of learningmethods, increasing the prevalence of the positive
cases can jumpstart the method into looking more extensively for solutions.

9.5 Distributed Text Mining

The Internet provides a vast repository of textual data that is impossible to store and
process on a single computer. Even privately held corpora are steadily increasing
in volume and are often stored in a distributed manner due to practical and privacy
considerations. Text mining tools are being increasingly deployed on such data for
time-critical goals—not onlymust theybe able to process themassive amounts of text,
theymust do so in a reasonable amount of time. The approaches of Sect. 9.4 arose out
of the need to apply existing algorithms in such situations. An alternative emerging
trend is to take advantage of affordable high-performance computing systems to
process data using distributed methods. The challenge is to develop new algorithms
that can be implemented using parallel/distributed computing infrastructure.

A popular architecture that was originally developed to handle text processing
tasks in search engines is based on the map-reduce paradigm. The architecture hides
the distributed system details from the programmer and handles all synchronization,
parallelization, fault-recovery and I/O. As a result, the programmer can concentrate
on solving the text-processing task. A key feature of this model is that the programs
are written using map and reduce primitives derived from functional programming
languages. Many text mining tasks can be easily recast as a sequence of map and
reduce steps. The popularity of this architecture is partly due to the fact that it relies
on cheap commodity hardware. Another reason for the popularity is that a free,
high-quality, open-source implementation, called hadoop, is available.

Figure9.10 shows how a list of words and their frequencies can be obtained
from a document collection on hadoop. The programmer specifies only the code for
the map and reduce steps. The map/reduce phases run independently on different
splits of the data. Hadoop takes care of splitting/partitioning the data, assigning
processors for the map/reduce steps, synchronizing the phases, etc. The map phase
outputs intermediate key-value pairs with the key being a word and the value being
1, to indicate presence of a word. Hadoop then sorts and partitions the pairs by the
keys and sends each reducer pairs having the same key. The reducers aggregate the
key values to obtain the counts. Clearly, not all tasks can be achieved in a single
map-reduce step. A key assumption made in map-reduce programming is that disk
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Fig. 9.10 Computing word counts with MapReduce

space is cheap and limitless and programs can be made to run faster simply by
adding more processor nodes. Hence there is no need for any individual map-reduce
phase to be very complex. They can simply write out intermediate output for further
processing by subsequent map/reduce phases. Input files are typically organized
for quick sequential reads. The entire framework operates on large computer clusters
madewith standard components. The system is fault-tolerant and able to transparently
handle the available resources and reassign work from failed nodes.

Distributed Text Mining presents a unique set of challenges and opportunities.
With the availability of vast amounts of data, it becomes difficult to apply supervised
learning methods that require labeled training data and unsupervised approaches
are preferred. To realize the benefits of parallelism, the communication between
individual processors must be minimized. Common information may be provided to
each processor at the start, but all preprocessing is done locally by each processor.
The preferred solution in a distributed data setting is a weighted combination of
multiple models as opposed to a single monolithic model. With large amounts of
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data, basic assumptions in modeling need to be revisited. Are the data from the same
population? Can they be partitioned into different vector spaces?

As real-world document collections grow in size, distributedmethods for textmin-
ing are among the most promising approaches to getting results in reasonable time.
They are particularly attractive for processing streaming data—unlimited sequences
of data that cannot be stored. Text data streams are common inWeb applications such
as RSS feeds and search-engines. Time is an important feature of streaming data and
the modeling process needs to take it into consideration. Shifts in the population over
time can trigger re-modeling or model adaptation.

9.6 Learning to Rank

In ranking applications, a computer system is required to rank a set of items based
on a given input. Moreover, the system often needs to present only a few top ranked
items to the user. Therefore the system output quality is largely determined by the
performance near the top of its rank-list.

This problem has become increasingly important. An example is Internet search,
where the user presents a query to the search engine, and the search engine then
selects a few web-pages that are most relevant to the query from the whole web. The
quality of a search engine is largely determined by the top-ranked results the search
engine can display on the first page. Therefore the evaluation of ranking systems
focus on the top positions.

In practical applications, each available position i can be associated with a weight
ci that measures the importance of that position. Let yi measure the quality of the
result at position i (for example, inweb search, if page i is relevant,wemay set yi = 1;
otherwise, we set yi = 0), the ranking quality is the weighted sum:

∑m
i=1 ci yi . This

metric is referred to as DCG (discounted cumulated gain).
Much research in ranking has focused on pair-wise preference learning. In this

learning model, we are presented with two items x and x ′, and whether x ranks
higher than x ′ (label is 1); or x ranks lower than x ′ (label is −1). The goal is to learn
a scoring function f (x) such that f (x) > f (x ′) if x is ranked higher than x ′. If
the scoring function is linear: f (x) = w · x + b, then f (x) > f (x ′) is equivalent
to w · (x − x ′) > 0. Therefore for linear scoring models, we can turn a pair-wise
preference learning problem into binary classification: for each pair (x, x ′), we create
a training datumwith input x − x ′, and the corresponding output label is either 1 (if x
ranks higher) or−1 (if x ranks lower). The scoring function f (.) can then be learned
with a linear classifier. For nonlinear models, the learning problem is different from
binary classification.

The information retrieval problem, which is discussed in Chap.4, can be con-
sidered as a ranking problem. A commercial ranking system such as a web search
engine also needs to aggregate information from many different sources, such as
tf-idf text matching score, page quality (e.g., page rank score), the popularity of a
page (how many times it is clicked), etc. The system takes such information for each

http://dx.doi.org/10.1007/978-1-4471-6750-1_4
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item to be ranked (such as a web-page) as its input and produces an aggregated score
as its output. Items (such as web-pages) with highest scores are then presented to the
user. Therefore how to effectively learn the final scoring function is a fundamental
research problem.

9.7 Question Answering

When the Web began to grow rapidly and the number of users who wanted to search
theWeb also grew rapidly, interest in simplemeans of query, such as natural language
(NL) query, grew also. Most systems that billed themselves as NL systems were
actually key word systems in disguise. They stripped the NL input of function words
(such as “the” and the like) and ran a conventional search using the remaining content
words.

One of the more popular NL query systems was Ask Jeeves, a company that has
survived the Internet business collapse. According to comments in response to a
patent infringement suit brought by two MIT professors, the system worked in the
followingway. First, the question is tokenized to find key terms, and then the question
is parsed forwordmeaning by semantic and syntactic networks that were built byAsk
Jeeves. After the question is tokenized, it is reorganized into a structure compatible
with question templates developed by Ask Jeeves. At this point, the service provides
the user with a set of potential locations for the answer to the question.

From the Ask Jeeves example, we can see that the goal of question answering is to
find the answer from a collection of text documents to questions in natural language
format. Current systems can answer questions such as “In what country did the game
of croquet originate?” or “What was the length of the Wright brothers’ first flight?”
The answer to such questions can be a short passage of text or a sentence that contains
the answer. The potential answer phrases can also be marked up in the presentation
of the results.

A typical question-answering system, illustrated in Fig. 9.11, contains the follow-
ing comments:

• answer type classification
• answer entity annotation
• information retrieval
• answer selection.

The answer type classificationmodulematches the incoming question against a set
of predefined templates. These templates determine what kind of information we are
looking for. Accordingly, the question will be assigned a set of potential answer types
such as length, location, etc. Meanwhile, the underlying document collection is pre-
annotatedwith the answer types using a named entity tagger. The annotated sentences
will be matched against the expected answer type in the answer selection module to
rank and narrow down the potential choices. The information retrieval (IR) module
selects a set of sentences that potentially contain the answer from the underlying
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Fig. 9.11 Question
answering system

document collection. This is done by using the search technology. However, since
the same question can often be asked in different ways, the IR module includes a
query expansion stage, which maps key words in the question into synonyms or
equivalent linguistic forms. The answer selection module ranks candidates found by
the IR module and marks the desired answer entities. In order to determine whether
a sentence or text passage is the desired answer to the question, one may take various
heuristic information. Either a hand-crafted system or a machine-learning system
can be used for this purpose.

9.8 Summary

In this chapter, we briefly touch on topics that may increase in importance for text
mining, but are not yet central to prediction. These include summarization, active
learning, learning with unlabeled data, learning with multiple samples or models,
online learning, deep learning, cost-sensitive learning, unbalanced samples and rare
events, distributed text mining, rank learning and question answering.

9.9 Historical and Bibliographical Remarks

Text summarization has been a topic of interest since the early days of text processing
under the name of “automatic abstracting” (Luhn 1958). As the amount of online text
has continued to grow, the activity has become more organized. InMay 1998, the US
government completed the TIPSTER Text Summarization Evaluation (SUMMAC),
which was the first large-scale, developer-independent evaluation of automatic text
summarization systems. SUMMAC, it was claimed, established definitively in a
large-scale evaluation that automatic text summarization is very effective in relevance
assessment tasks. An overview of the present state of the art can be found in the
papers in Radev and Tenfel (2003). Multidocument summarization is also discussed
in Radev et al. (2002).
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Due to the difficulty of obtaining a large amount of labeled data in many appli-
cations, there has been increasing interest in learning with unlabeled data. Active
learning is related to an old idea in statistics called sequential design. It has been
studied in the machine-learning community both theoretically and empirically. The
uncertainty-sampling method appeared in Lewis and Catlett (1994). Approaches that
combine active learning with boosting and voting classifiers are given in Liere and
Tadepalli (1997) and Iyengar et al. (2000). Many empirical studies suggested that
active learning improves the learning performance, but the method still requires sig-
nificant human efforts in data labeling. It only reduces the amount of human labor by
focusing on the most informative samples. Ideally, one hopes to take advantage of
unlabeled data without any additional human effort. A number of proposals appeared
(Nigam 2001). The idea of cotraining was proposed in Blum and Mitchell (1998).
Subsequent experiments suggested that the method works for some problems but
not always. As argued in Zhang and Oles (2000), the usefulness of unlabeled data
depends on the underlying probability model that generates the data. For certain
problems, procedures that simulate the unknown labels can be harmful due to the
potential errors introduced into the training data.

Boosting techniques for text categorization are discussed in Schapire and Singer
(2000). A variation of voted multiple decision trees was used inWeiss et al. (1999) to
produce one of the best reported results for text categorization on the standardReuters
benchmark data. Discussions of stacking techniques for combining predictions from
multiple models are found in Bao et al. (2009) and Dzeroski and Ženko (2004). The
Netflix contest, a prediction competition with a million dollar prize and thousands of
entrants, was won by a collaboration of teams using a stacking approach to learning
(Bell et al. 2009).

The perceptron method was first analyzed by Rosenblatt (1962). It was shown
that the algorithm makes no more than a certain number of mistakes when the train-
ing data are linearly separable. This result has motivated many developments in the
computational learning theory community (COLT), where other online algorithms
with provable mistake bounds were proposed. A particularly interesting algorithm is
the Winnow method proposed by Littlestone (1988). Instead of the additive update
rule in the perceptron algorithm, the Winnow method uses a multiplicative update
scheme. Despite its simplicity, the perceptron method can be quite effective. It has
been applied tomany applications, including some natural language processing prob-
lems (Collins 2002).

Deep learning traces its origin from the neural network literature in the 1980s.
It became more successful than in earlier periods because of significant perfor-
mance improvement in industrial applications such as speech and image recognitions
(Hinton et al. 2012; Krizhevsky et al. 2012). This is due to the availability of signifi-
cantly more data in these applications, as well as the substantial improvement of the
computational resources. In particular, modern GPU computing made the training of
neural networks many times faster than previously possible, and thus it is possible to
handle significantly larger datasets. Deep learning has been less successful on text
applications so far, and the main effort has been to use neural network and related



9.9 Historical and Bibliographical Remarks 221

techniques to embed text into numerical vectors, such as word2vec of Mikolov et al.
(2013); also see https://code.google.com/p/word2vec/. Applications of deep learning
in text mining and natural language processing is a very active area of research.

In Szegedy et al. (2014), it is demonstrated that individual hidden units in neural
networks, do not necessarily correspond to complete and understandable abstrac-
tions. Rather, all of the hidden units may be necessary to fulfill an abstract concept.
Moreover, the authors show that a slight perturbation of a correctly classified image,
which looks identical to the human eye,may result in amisclassification by the neural
net. In a related paper, it is shown that “deep neural networks are easily fooled” when
classifying images (Nguyen et al. 2015).

The MapReduce model (Dean and Ghemawat 2008) is derived from functional
programming and earlier languages such as Lisp. Hadoop (White 2009) began as an
open-source reimplementation of Google’s proprietary file system (Ghemawat et al.
2003). It is now a part of Apache with several subprojects. See http://hadoop.apache.
org. Besides Hadoop, there are many other commercial and free implementations of
MapReduce and a partial listing can be found in its Wikipedia page.

The pair-wise preference learning model for ranking has been studied by many
authors. For example, an SVM based ranking method was considered in Herbrich
et al. (2000), and a similar method based on AdaBoost was proposed in Freund
et al. (2003). Machine learning ranking methods were also used in optimizing com-
mercial web-search systems (Burges et al. 2005; Cossock and Zhang 2008). The
DCG criterion for measuring ranking performance was proposed in Jarvelin and
Kekalainen (2000). It allows quality grades for returned items yi to have multiple
values, which generalizes more traditional information retrieval metrics that allow
only binary quality grades (either relevant or not relevant).

During the 1970s and early 1980s, natural language question answering was an
active research area. Questions were directed at formatted databases rather than
text archives. Much of the research was devoted to building systems that could be
customized by a user to a new database (Damerau 1985). Unfortunately, the problem
proved to be extremely difficult to solve, and researchers moved to other topics.
However, the area revived in the late 1990s due to its potential applications in Web
searching. Beginning in 1999, the National Institute of Standards and Technology
(NIST), which had been sponsoring a Text Retrieval Conference (TREC), added a
track for question answering.

In the first conferences, participants returned either 50-or 250-word passages that
supposedly contained the answer. In some scientific conferences, participants return
only a small snippet of text as the answer to a question, alongwith a confidence rating
for the answer. In 2002, the best system achieved a recall of 80% with a precision
of 59%. Two other systems had even better recall but with precision in the low 20%
range (Voorhees and Buckland 2002). In 2003, NIST added an additional track, High
Accuracy Retrieval from Documents (HARD), in which participants could leverage
additional information about the searcher or the search context through techniques
such as passage retrieval and using very targeted interactionwith the searcher. Details

https://code.google.com/p/word2vec/
http://hadoop.apache.org
http://hadoop.apache.org
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of individual systems can be found in the proceedings of the TREC conferences,
available on the NIST Web site.

The Ask Jeeves techniques for question answering are described in Seshasai
(2000).

9.10 Questions and Exercises

1. In generating summaries, how can one ensure that they are grammatically correct?
2. Supposewe have a learningmethod that only learns hard classification rules. How

can it be used in an active learning environment?
3. Given a set of documents, describe how document vectors (using the 50 most

frequent words as features) can be produced using map/reduce.
4. Discuss the role of linguistic information in question-answering systems.
5. Consider a system such as Yahoo! Answers. Discuss how it might be designed

and what are some of the problems with evaluating it.
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